scholarly journals Effect of Pulsed 810 nm Laser Photobiomodulation on Dermal Wound Healing and Oxidative Stress in Immunosuppressed Rats

2021 ◽  
Vol 6 (2) ◽  
pp. 122-127
Author(s):  
Gaurav K. Keshri ◽  
Saurabh Verma ◽  
Asheesh Gupta

Under immunosuppression, the sequential overlapping wound repair phases get hampered due to dysregulated or persistent inflammation leading to non-healing chronic wounds formation. The present study investigates the effect of low-power 810 nm diode laser (70 mW mean output power; 40 mW/cm2 average irradiance; 24 J/cm2 total fluence; 10 Hz pulse frequency; duty cycle 50 per cent; 10 min. illumination time once daily for seven days) photobiomodulation (PBM) on dermal penetration ability, wound healing and oxidative stress in hydrocortisone-induced immunosuppressed rats. The results of the penetration ability of 810 nm laser irradiation to the depth of the sub-dermal region revealed that the transmitted power of laser at 10 Hz pulsed-mode was better and easier than continuous-mode. The present findings clearly delineated that PBM with 810 nm laser at 10 Hz significantly augmented healing and reduced oxidative stress as evidenced by decreased free radicals, nitric oxide (NO) levels, enhanced superoxide dismutase (SOD) enzyme activity and wound area contraction facilitating the cellular redox homeostasis and promoting the tissue repair process. In conclusion, PBM with NIR 810 nm laser at pulsed-mode 10 Hz frequency showed better penetration and accelerated dermal wound healing in immunosuppressed rats.

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 176
Author(s):  
Jun Jiang ◽  
Ursula Kraneburg ◽  
Ulf Dornseifer ◽  
Arndt F. Schilling ◽  
Ektoras Hadjipanayi ◽  
...  

The ability to use the body’s resources to promote wound repair is increasingly becoming an interesting area of regenerative medicine research. Here, we tested the effect of topical application of blood-derived hypoxia preconditioned serum (HPS) on wound healing in a murine wound model. Alginate hydrogels loaded with two different HPS concentrations (10 and 40%) were applied topically on full-thickness wounds created on the back of immunocompromised mice. We achieved a significant dose-dependent wound area reduction after 5 days in HPS-treated groups compared with no treatment (NT). On average, both HPS-10% and HPS-40% -treated wounds healed 1.4 days faster than NT. Healed tissue samples were investigated on post-operative day 15 (POD 15) by immunohistology and showed an increase in lymphatic vessels (LYVE-1) up to 45% with HPS-40% application, while at this stage, vascularization (CD31) was comparable in the HPS-treated and NT groups. Furthermore, the expression of proliferation marker Ki67 was greater on POD 15 in the NT-group compared to HPS-treated groups, in accordance with the earlier completion of wound healing observed in the latter. Collagen deposition was similar in all groups, indicating lack of scar tissue hypertrophy as a result of HPS-hydrogel treatment. These findings show that topical HPS application is safe and can accelerate dermal wound healing in mice.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1234
Author(s):  
Aditya Kaul ◽  
Walker D. Short ◽  
Sundeep G. Keswani ◽  
Xinyi Wang

Hyaluronic acid (HA), a glycosaminoglycan ubiquitous in the skin, has come into the limelight in recent years for its role in facilitating dermal wound healing. Specifically, HA’s length of linearly repeating disaccharides—in other words, its molecular weight (MW)—determines its effects. High molecular weight (HMW)-HA serves an immunosuppressive and anti-inflammatory role, whereas low molecular weight (LMW)-HA contributes to immunostimulation and thus inflammation. During the inflammatory stage of tissue repair, direct and indirect interactions between HA and the innate and adaptive immune systems are of particular interest for their long-lasting impact on wound repair. This review seeks to synthesize the literature on wound healing with a focus on HA’s involvement in the immune subsystems.


2019 ◽  
Author(s):  
Swathi Balaji ◽  
Emily Steen ◽  
Xinyi Wang ◽  
Hima V. Vangapandu ◽  
Natalie Templeman ◽  
...  

AbstractEvidence from prior studies of cutaneous trauma, burns, and chronic diabetic wound repair demonstrates that endothelial progenitor cells (EPCs) contribute tode novoangiogenesis, anti-inflammatory reactions, tissue regeneration, and remodeling. We have shown that IL-10, a potent anti-inflammatory cytokine, promotes regenerative tissue repair in an adult model of dermal scar formation via the regulation of fibroblast-specific hyaluronan synthesis in a STAT3 dependent manner. While it is known that IL-10 drives EPC recruitment and neovascularization after myocardial infarction, its specific mode of action, particularly in dermal wound healing and neovascularization in both control and diabetic wounds remains to be defined. Here we show that IL-10 promotes EPC recruitment into the dermal wound microenvironment to facilitate neovascularization and wound healing of control and diabetic (db/db) wounds via vascular endothelial growth factor (VEGF) and stromal-cell derived factor 1 (SDF-1α) signaling. Inducible skin-specific STAT3 knockout (KO) mice were studied to determine whether the impact of IL-10 on the neovascularization and wound healing is STAT3 dependent. We found that IL-10 treatment significantly promotes dermal wound healing with enhanced wound closure, robust granulation tissue formation and neovascularization. This was associated with elevated wound EPC counts as well as increased VEGF and high SDF-1α levels in control mice, an effect that was abrogated in STAT3 KO transgenic mice. These findings were supportedin vitro, wherein IL-10-enhanced VEGF and SDF-1α synthesis in primary murine dermal fibroblasts. IL-10-conditioned fibroblast media was shown to promote sprouting and network formation in aortic ring assays. We conclude that overexpression of IL-10 in the wound-specific milieu recruits EPCs and promote neovascularization, which occurs in a STAT3-dependent manner via regulation of VEGF and SDF-1α levels. Collectively, our studies demonstrate that IL-10 increases EPC recruitment leading to enhanced neovascularization and healing of dermal wounds.


2009 ◽  
Vol 18 (5) ◽  
pp. 445-453 ◽  
Author(s):  
Christian Templin ◽  
Karsten Grote ◽  
Kai Schledzewski ◽  
Jelena-Rima Ghadri ◽  
Sabine Schnabel ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
pp. 91 ◽  
Author(s):  
Joris van Dongen ◽  
Martin Harmsen ◽  
Berend van der Lei ◽  
Hieronymus Stevens

The skin is the largest organ of the human body and is the first line of defense against physical and biological damage. Thus, the skin is equipped to self-repair and regenerates after trauma. Skin regeneration after damage comprises a tightly spatial-temporally regulated process of wound healing that involves virtually all cell types in the skin. Wound healing features five partially overlapping stages: homeostasis, inflammation, proliferation, re-epithelization, and finally resolution or fibrosis. Dysreguled wound healing may resolve in dermal scarring. Adipose tissue is long known for its suppressive influence on dermal scarring. Cultured adipose tissue-derived stromal cells (ASCs) secrete a plethora of regenerative growth factors and immune mediators that influence processes during wound healing e.g., angiogenesis, modulation of inflammation and extracellular matrix remodeling. In clinical practice, ASCs are usually administered as part of fractionated adipose tissue i.e., as part of enzymatically isolated SVF (cellular SVF), mechanically isolated SVF (tissue SVF), or as lipograft. Enzymatic isolation of SVF obtained adipose tissue results in suspension of adipocyte-free cells (cSVF) that lack intact intercellular adhesions or connections to extracellular matrix (ECM). Mechanical isolation of SVF from adipose tissue destructs the parenchyma (adipocytes), which results in a tissue SVF (tSVF) with intact connections between cells, as well as matrix. To date, due to a lack of well-designed prospective randomized clinical trials, neither cSVF, tSVF, whole adipose tissue, or cultured ASCs can be indicated as the preferred preparation procedure prior to therapeutic administration. In this review, we present and discuss current literature regarding the different administration options to apply ASCs (i.e., cultured ASCs, cSVF, tSVF, and lipografting) to augment dermal wound healing, as well as the available indications for clinical efficacy.


2003 ◽  
Vol 120 (6) ◽  
pp. 1130-1137 ◽  
Author(s):  
Anna M. Szpaderska ◽  
Eric I. Egozi ◽  
Richard L. Gamelli ◽  
Luisa A. DiPietro

2020 ◽  
Vol 8 ◽  
Author(s):  
Pengcheng Xu ◽  
Yaguang Wu ◽  
Lina Zhou ◽  
Zengjun Yang ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. Methods Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. Results PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. Conclusion PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.


Sign in / Sign up

Export Citation Format

Share Document