scholarly journals Rapid Synthesis of Water-soluble NiCl2 Nanorods via Recrystallization for Super Capacitors Applications

2014 ◽  
Vol 17 (4) ◽  
pp. 209-211 ◽  
Author(s):  
Jia-Chao Xing ◽  
Yan-Li Zhu ◽  
Qing-Jie Jiao

Highly uniform NiCl2 nanorods were synthesized successfully via recrystallization and employed as electrode materials for super capacitors applications. The water-soluble Ni/NiCl2 electrode proves to show typical pseudocapacitive characteristics and delivers a very high specific capacitance of 1182.7 F g-1 at 2 A g-1. The charge storage and conversion process initiates from the chemically combination of Ni2+ and OH-, and maintains a reversible redox reaction of Ni(II) ↔ Ni(III) on the electrode. It opens a new insight into the fabrication of multifarious water-soluble inorganic salts for super capacitors applications using the ionic electro negativity parameter as the theoretical guideline.

1999 ◽  
Vol 575 ◽  
Author(s):  
Suh-Cern Pang ◽  
MarcA Anderson

ABSTRACTNanoparticulate MnO2thin films fabricated by the sol-gel process have been shown to be an outstanding novel electrode material for Ultracapacitors. The average specific capacitance of sol-gel-derived MnO2thin-films on nickel substrates as determined by cyclic voltammetry ranged from 566 to 698 F/g. These films also exhibited good cycling stability within the potential range of 0.0-0.9V (vs SCE) in unbuffered aqueous electrolyte. Both CV and XPS studies showed that MnO2films have remained chemically and structurally intact after 1,500 cycles. The XRD spectra and SEM micrographs showed that the microstructure of MnO2thin films are highly porous, and poorly crystalline or amorphous in nature. The high specific capacitance of MnO2may be predominantly due to pseudocapacitance associated with homogenous and reversible redox reactions of proton insertion into and out of the MnO2lattice. Any variation in the microstructure and thickness of films might affect proton mobility within the oxide matrix and thereby affecting their cycling behaviors. Further optimization of the cycling behaviors is envisaged with better microstructural and thickness control of these sol-gelderived nanoparticulate MnO2thin films.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2020 ◽  
Vol 13 (02) ◽  
pp. 2051007
Author(s):  
Jie Dong ◽  
Qinghao Yang ◽  
Qiuli Zhao ◽  
Zhenzhong Hou ◽  
Yue Zhou ◽  
...  

Electrode materials with a high specific capacitance, outstanding reversibility and excellent cycle stability are constantly pursued for supercapacitors. In this paper, we present an approach to improve the electrochemical performance by combining the advantages of both inorganic and organic. Ni-MnO2/PANi-co-PPy composites are synthesized, with the copolymer of aniline/pyrrole being coated on the surface of Ni-doped manganese dioxide nanospheres. The inorganic–organic composite enables a substantial increase in its specific capacitance and cycle stability. When the mass ratio of Ni-MnO2 to aniline and pyrrole mixed monomer is 1:5, the composite delivers high specific capacitance of 445.49[Formula: see text]F/g at a scan rate of 2[Formula: see text]mV/s and excellent cycle stability of 61.65% retention after 5000 cycles. The results indicate that the Ni-MnO2/PANi-co-PPy composites are promising electrode materials for future supercapacitors application.


RSC Advances ◽  
2016 ◽  
Vol 6 (1) ◽  
pp. 439-447 ◽  
Author(s):  
Rui Dou ◽  
Shuanglin Li ◽  
Yan Shao ◽  
Bo Yin ◽  
Mingbo Yang

A hierarchical tri-continuous structure is formed and controlled in PVDF/PS/HDPE ternary blends. A very high level of PS continuity, about 80%, is achieved only with a PS volume composition as low as 11 vol%.


2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


Author(s):  
Rosaria Ciriminna ◽  
Billy Forest ◽  
Francesco Meneguzzo ◽  
Mario Pagliaro ◽  
Mark Hamann

A brief technical and economic insight into producing the water-soluble yellow colorant limocitrol 3-O-6”-[3-hydroxyl-3-methylglutaryl)])-β-D-glucopyranoside from waste lemon peel via simple solid-liquid extraction in aqueous ethanol or via hydrodynamic cavitation of waste lemon peel in water, shows that the biocolorant can be obtained at affordable cost. Coupled to the simplicity and sustainability of the extraction processes suggested, the high chemical and physical stability of this polymethoxylated flavanol and the health benefits of citrus flavonoids, support industrialization of this new bioeconomy production.


2012 ◽  
Vol 59 (3) ◽  
pp. 154-159
Author(s):  
Djurica Grga ◽  
Marina Marjanovic ◽  
Igor Hut ◽  
Bojan Dzeletovic ◽  
Djuro Koruga

Emerging technologies and new nanoscale information have potential to transform dental practice by improving all aspects of diagnostics and therapy. Nanocharacterization allows understanding of oral diseases at molecular and cellular levels which eventually can increase the success of prevention and treatment. Opto-magnetic spectroscopy (OMS) is a promising new technique based on light-matter interaction which allows insight into the quantum state of matter. Since biomolecules and tissues are usually paramagnetic or diamagnetic materials it is possible to determine the dynamics of para-and diamagnetism at different teeth structures using that method. The topography of the surface of a sample can be obtained with a very high resolution using atomic force microscopy (AFM), which allows observation of minimal changes up to 10 nm, while magnetic force microscopy (MFM) is used to record the magnetic field gradient and its distribution over the surface of a sample. The aim of this study was to determine the possibility of AFM and MFM for the characterization of dental calculus, and a potential application of OMS for the detection of subgingival dental calculus.


2008 ◽  
Vol 9 (2) ◽  
pp. 179-203 ◽  
Author(s):  
Christoph Bartneck ◽  
Juliane Reichenbach ◽  
Julie Carpenter

This paper presents two studies that investigate how people praise and punish robots in a collaborative game scenario. In a first study, subjects played a game together with humans, computers, and anthropomorphic and zoomorphic robots. The different partners and the game itself were presented on a computer screen. Results showed that praise and punishment were used the same way for computer and human partners. Yet robots, which are essentially computers with a different embodiment, were treated differently. Very machine-like robots were treated just like the computer and the human; robots very high on anthropomorphism / zoomorphism were praised more and punished less. However, barely any of the participants believed that they actually played together with a robot. After this first study, we refined the method and also tested if the presence of a real robot, in comparison to a screen representation, would influence the measurements. The robot, in the form of an AIBO, would either be present in the room or only be represented on the participants’ computer screen (presence). Furthermore, the robot would either make 20% errors or 40% errors (error rate) in the collaborative game. We automatically measured the praising and punishing behavior of the participants towards the robot and also asked the participant to estimate their own behavior. Results show that even the presence of the robot in the room did not convince all participants that they played together with the robot. To gain full insight into this human–robot relationship it might be necessary to directly interact with the robot. The participants unconsciously praised AIBO more than the human partner, but punished it just as much. Robots that adapt to the users’ behavior should therefore pay extra attention to the users’ praises, compared to their punishments.


2018 ◽  
Vol 5 (1) ◽  
pp. 171186 ◽  
Author(s):  
Guofu Ma ◽  
Fengting Hua ◽  
Kanjun Sun ◽  
Enke Fenga ◽  
Hui Peng ◽  
...  

The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g –1 and 255 F g –1 at 0.5 A g –1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg –1 at a power density of 871.2 W kg –1 in the voltage window of 0–1.6 V with 2 M KOH solution.


Sign in / Sign up

Export Citation Format

Share Document