scholarly journals Effect of Substituents on the Electrochemical Reversible Discharge Capacity of Cobalt Hydroxide Electrodes

2015 ◽  
Vol 18 (2) ◽  
pp. 091-093 ◽  
Author(s):  
Thimmasandra Narayan Ramesh

Cobalt hydroxide, nickel hydroxide-cobalt hydroxide and zinc oxide-cobalt hydroxide biphasic mixtures were prepared by precipitation method. In spite of structural similarities exhibited by nickel hydroxide and cobalt hydroxide samples, former is a good electrode material and exchanges 1e-/Ni while latter does not show any reversibility. Presence of small amount of other metal ions such as nickel or zinc in the lattice of cobalt hydroxide or as a biphasic mixture of cobalt hydroxide-nickel hydroxide/cobalt hydroxide- zinc oxide, exchange up to 0.2 to 0.24e- exchange compared to pure cobalt hydroxide which shows 0.1 e- exchange.

2013 ◽  
Vol 11 (4) ◽  
pp. 535-545

Zinc oxide nanocrystals were prepared by precipitation method using ZnSO4.7H2O and NaOH as raw materials. The prepared ZnO nanocrystals were characterized by powder X-ray diffraction (XRD). Primary objective was to focus on the influence of inorganic oxidants, metal ions and anions on photocatalytic activity of prepared ZnO nanocrystals. The study on the effects of oxidants such as IO−4 , 2 S2O8− , BrO3− and ClO3− reveal that periodate ion is more efficient than others in improving the photocatalytic properties of ZnO nanocrystals. An investigation on the influence of metal ions on photocatalytic activity reveals that the removal of pollutant increases in the presence of Fe3+ and Cu2+. But negative effects are observed in the presence of anions. The possible roles of the additives on the reaction and the possible mechanisms of effect were discussed. The quantum yield ( ϕ ) and electrical energy per order (EEO) were estimated and compared for UV/ZnO/Oxidant catalytic system.


2019 ◽  
Vol 7 (44) ◽  
pp. 25290-25296 ◽  
Author(s):  
Naoki Tarutani ◽  
Yasuaki Tokudome ◽  
Matías Jobbágy ◽  
Galo J. A. A. Soler-Illia ◽  
Masahide Takahashi

Hybridization of electrochemical functions derived from large hetero-interfaces by assembly of layered metal hydroxide nanoclusters.


2021 ◽  
Vol 330 ◽  
pp. 115602
Author(s):  
Seyyed Vahid Mousazad Goorabjavari ◽  
Fateme Golmohamadi ◽  
Saba Haririmonfared ◽  
Hosein Ahmadi ◽  
Soheil Golisani ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 877 ◽  
Author(s):  
Swarup Roy ◽  
Hyun Chan Kim ◽  
Pooja S. Panicker ◽  
Jong-Whan Rhim ◽  
Jaehwan Kim

Here, we report the fabrication and characterization of cellulose nanofiber (CNF)-based nanocomposite films reinforced with zinc oxide nanorods (ZnOs) and grapefruit seed extract (GSE). The CNF is isolated via a combination of chemical and physical methods, and the ZnO is prepared using a simple precipitation method. The ZnO and GSE are used as functional nanofillers to produce a CNF/ZnO/GSE film. Physical (morphology, chemical interactions, optical, mechanical, thermal stability, etc.) and functional (antimicrobial and antioxidant activities) film properties are tested. The incorporation of ZnO and GSE does not impact the crystalline structure, mechanical properties, or thermal stability of the CNF film. Nanocomposite films are highly transparent with improved ultraviolet blocking and vapor barrier properties. Moreover, the films exhibit effective antimicrobial and antioxidant actions. CNF/ZnO/GSE nanocomposite films with better quality and superior functional properties have many possibilities for active food packaging use.


2021 ◽  
Author(s):  
Jinkwang Hwang ◽  
Rika Hagiwara ◽  
Hiroshi Shinokubo ◽  
Ji-Young Shin

Dual-ion sodium-organic secondary batteries were provided with antiaromatic porphyrinoid, NiNc as an active electrode material, which implemented inherent charge-discharge behaviors with high discharge capacity, high stability, high Coulombic efficiency with...


RSC Advances ◽  
2020 ◽  
Vol 10 (33) ◽  
pp. 19410-19418
Author(s):  
M. Sangeetha Vidhya ◽  
G. Ravi ◽  
R. Yuvakkumar ◽  
Dhayalan Velauthapillai ◽  
M. Thambidurai ◽  
...  

So far, numerous metal oxides and metal hydroxides have been reported as an electrode material, a critical component in supercapacitors that determines the operation window of the capacitor.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anh Thi Le ◽  
Swee-Yong Pung

Purpose This paper aims to investigate the reusability of metal/metal oxide-coupled ZnO nanorods (ZnO NRs) to degrade rhodamine B (RhB). Design/methodology/approach ZnO NRs particles were synthesized by precipitation method and used to remove various types of metal ions such as Cu2+, Ag+, Mn2+, Ni2+, Pb2+, Cd2+ and Cr2+ ions under UV illumination. The metal/metal oxide-coupled ZnO NRs were characterized by scanning electron microscope, X-ray diffraction and UV-Vis diffuse reflectance. The photodegradation of RhB dye by these metal/metal oxide-coupled ZnO NRs under UV exposure was assessed. Findings The metal/metal oxide-coupled ZnO NRs were successfully reused to remove RhB dye in which more than >90% of RhB dye was degraded under UV exposure. Furthermore, the coupling of Ag, CuO, MnO2, Cd and Ni particles onto the surface of ZnO NRs even enhanced the degradation of dye. The dominant reactive species involved in the degradation of RhB dye were •OH- and •O2−-free radicals. Research limitations/implications The coupling of metal/metal oxide onto the surface of ZnO NRs after metal ions removal could affect the photocatalytic performance of ZnO NRs in the degradation of organic pollutants in subsequent stage. Practical implications A good reusability performance of metal/metal oxide-coupled ZnO NRs make ZnO NRs become a desirable photocatalyst material for the treatment of wastewater, which consists of both heavy metal ions and organic dyes. Originality/value Metal/metal oxide coupling onto the surface of ZnO NRs particles improved subsequent UV-assisted photocatalytic degradation of RhB dye.


2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


2021 ◽  
Vol 45 (5) ◽  
pp. 2795-2803
Author(s):  
R. R. Samal ◽  
Aneeya K. Samantara ◽  
S. Mahalik ◽  
J. N. Behera ◽  
B. Dash ◽  
...  

Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.


Sign in / Sign up

Export Citation Format

Share Document