Novel Synthesis of Plate-like LiFePO4 by Hydrothermal Method

2016 ◽  
Vol 19 (1) ◽  
pp. 033-036 ◽  
Author(s):  
Yi-Jie Gu ◽  
Chang-Jiao Li ◽  
Long Cheng ◽  
Peng-Gong Lv ◽  
Fu-Jie Fu ◽  
...  

Lithium iron phosphate (LiFePO4) was prepared by hydrothermal synthesis method using FeSO4·7H2O and LiH2PO4 as resource of Li and Fe. The ratio of Li: Fe was maintained 1:1. The results suggested that pH value played a crucial role in the synthesis of LiFePO4, especially for the generation of impurities. We found that adding citric acid to the precursor was an effective way for chelating ferrous ions, thereby preventing the undesirable iron compounds during hydrothermal treatment. The particle morphology and the crystal orientation of the prepared LiFePO4 particles were investigated by the XRD and SEM results. The X-ray diffraction pattern of the samples indicated that single-phase LiFePO4 were successfully synthesized by hydrothermal method with a stoichiometric 1:1 ratio of Li :Fe.

2020 ◽  
Vol 861 ◽  
pp. 337-343
Author(s):  
Pusit Pookmanee ◽  
Piyarat Somsri ◽  
Sukon Phanichphant ◽  
Chanchana Thanachayanont

CuO microparticle was syntheszied by hydrothermal method. The starting precursors were used as copper (II) nitrate trihydrate (Cu (NO3)2·3H2O), nitric acid (HNO3) and sodium hydroxide (NaOH). The final pH value of the mixed solution was used 2M NaOH to adjust the pH was 8 and treated at 100-200 oC for 4-6 h in a hydrothermal vessel. The black fine powder was obtained after dried at 100 oC for 5 h. The phase and structure of CuO microparticle were characterized by X-ray diffraction (XRD). A single phase monoclinic structure synthezied by hydrothermal method at 200 oC for 4 and 6 h was obtained without calcination steps. The morphology CuO microparticle was investigated by scanning electron microscopy (SEM). It was likely grain in shape and the particle size in range of 2.94-4.06 μm. The element composition of CuO microparticle was indicated by energy dispersive X-ray spectrometry (EDX). The chemical compositions showed the characteristic X-ray energy of copper (Kα = 0.98 keV) and oxygen (Kα = 0.53 keV), respectively. The functional group of CuO microparticle was indentified by Fourier transform spectrophotometry (FTIR). The wavenumber at 690, 514 and 437 cm-1 was corresponded to vibration of Cu-O stretching.


Author(s):  
Elizabeth Putri Permatasari ◽  
Mega Permata Rindi ◽  
Agus Purwanto

<p>One of the most finest materials for lithium ion battery nowadays is lithium iron phosphate or LiFePO4. Lithium iron phosphate was synthesized with solid state reaction method  by  optimizing  the  variable  of  material  and  temperature.  The  variable  for calcination temperatures were 700oC, 800oC, and 900oC while the basic materials as Fe sources were Fe2O3 and FeSO4. Particles morphologies and quantity of crystal were investigated in details by X-ray diffraction analysis XRD. XRD imaging showed diffraction of nanoparticles LiFePO4 with crystal quantity 40,4% (800oC) and 59,1% (900oC) of materials Fe2O3,which the most quantity from other samples. Thus, chatode materials were made from LiFePO4 that synthesized at calcination temperatures 800oC and 900oC. In conclusion the material chatode from LiFePO4 that had been synthesized had so many impurities because it was hard to get single phase of nanoparticles LiFePO4 and need more improvement in optimizing the process condition for ideal chatode material.</p>


2017 ◽  
Vol 727 ◽  
pp. 280-283
Author(s):  
Xiao Ming Fu

Anatase TiO2 particles of about 20 nm in the diameter were successfully synthesized with Ti (SO4)2 as titanium source and stronger ammonia water as precipitant at 240°C for 48 h with pH=5 using the hydrothermal method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS). XRD analysis showed that the phase of the samples was anatase TiO2. TEM analysis confirmed that TiO2 particles of about 50 nm in the diameter were obtained when the pH value was 0.12. With the increasement of the pH value, the size of as-prepared TiO2 particles became remarkably fine. However, with the further increase of the pH value, the size of TiO2 particles was not obvious. TiO2 particles of about 20 nm in the diameter were obtained when the pH value was 5. And UV-VIS results showed that the size of anatase TiO2 nanoparticles, which became small, was propitious to the blue shift of their absorption peak.


2015 ◽  
Vol 827 ◽  
pp. 156-161
Author(s):  
Rani Cahyani Fajaryatun ◽  
Therecia Wulan Sukardi ◽  
Arif Jumari ◽  
Agus Purwanto

A lithium battery was composed of anode, cathode, and separator. The performance of lithium battery was influenced by the thickness of film, the composition of material, and the effect of surfactant and binder. This research investigated the effect of the anode film thickness to the electrochemical performances of lithium battery. Mesocarbon microbeads (MCMB) and lithium iron phosphate (LiFePO4) were used respectively as anode and cathode. Mesocarbon microbeads, carbon black (conductive agent), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed well to produce slurry. The slurry were then coated, dried and pressed. The anode had various thickness of 50 μm, 70 μm, 100 μm, and 150 μm. The cathode film was made with certain thickness. The performance of lithium battery was examined by Eight Channel Battery Analyzer, the composition of the anode sample was examined by XRD (X-Ray Diffraction), and the crystal structure of the anode sample was analyzed by SEM (Scanning Electron Microscope). The research showed that the thickness of anode film of 100 μm gave the best performance. The battery performance decreased if the thickness was more than 100 μm. The best performance of battery voltage were between 3649 mV and 3650 mV.


2012 ◽  
Vol 460 ◽  
pp. 218-221
Author(s):  
Dong Mei Zhao ◽  
Xue Peng Liu

The heat treatment temperature on the influence of the material structure and properties is discussed. At 710 °C the synthesis of LiFePO4 crystallization is complete, morphology, and particle size is moderate, which has the best electrochemical performance. Sphere of lithium iron phosphate is synthesized by ethylene glycol solvent under low temperature heat synthesis method, which can give a relatively high tap density of 1.6g•cm-3


2010 ◽  
Vol 03 (03) ◽  
pp. 177-180 ◽  
Author(s):  
JUN-XI ZHANG ◽  
MING-YU XU ◽  
XIAO-WEI CAO ◽  
NA XU ◽  
CHUN-YAN LAI ◽  
...  

Pure lithium iron phosphate and Mo -doped lithium iron phosphate were synthesized via improved coprecipitation, followed by spray dry processing and sintering at a high temperature for crystallization. The synthesis was based on a key step to promote the dissolution of Fe powder by the addition of Cu or CuO powder in phosphoric acid solution. The improved coprecipitation process could achieve homogeneous mixing of the reactants at the molecular level. The crystalline particle size of the LiFePO4 was between 20 and 70 nm. All the samples were pure single-phase indexed with orthorhombic Pnmb space group. The electrochemical performance of LiFe0.96Mo0.04PO4 , including its reversible capacity, cycle number and charge–discharge characteristics, were all better than those of pure LiFePO4 .


MRS Advances ◽  
2017 ◽  
Vol 2 (17) ◽  
pp. 939-944
Author(s):  
Fei Gu ◽  
Kichang Jung ◽  
Taehoon Lim ◽  
Alfredo A. Martinez-Morales

ABSTRACTAmong different efforts to increase the competitiveness of lithium-ion batteries (LIBs) in the energy storage marketplace, reducing the cost of production is a major effort by the LIB industry. This work proposes a synthesis method to decrease the production cost for LiFePO4, by synthesizing the material through an open-air environment solid state reaction.The lithium (Li)-ion battery is a member of the family of rechargeable batteries. In our approach, iron phosphate (FePO4) powder is preheated to eliminate moisture. Once dried, the FePO4 is mixed with lithium acetate (CH3COOLi), and the mixture is heated in a tube furnace. The solid-state reaction is conducted in an open-air environment. In order to minimize the oxidation of the formed LiFePO4, a modified tube reaction vessel is utilized during synthesis. X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) are used to characterize the crystal structure and chemical composition of the synthesized material. Furthermore, scanning electron microscopy (SEM) characterization shows the grain size of the formed LiFePO4 to be in the range of 200 nm to 600 nm. Cycling testing of fabricated battery cells using the synthesized LiFePO4 is done using an Arbin Tester.


2018 ◽  
Vol 283 ◽  
pp. 167-172
Author(s):  
Pusit Pookmanee ◽  
Khemmika Promwanna ◽  
Kanjanaporn Narong ◽  
Chanchana Thanachayanont ◽  
Chabaiporn Junin ◽  
...  

Nitrogen-doped titanium dioxide (N-doped TiO2) nanopowder was successfully prepared by the hydrothermal method. Titanium isopropoxide and urea were used as the starting precursors. The hydrothermal reaction was controlled at 200 °C for 2, 4 and 6 h. The white powder was obtained and dried for 24h. The crystal structure was identified by X-ray diffraction (XRD). A single phase of anatase structure was obtained without calcination steps. The morphology was investigated by field emission scanning electron microscopy (FESEM). The particles were irregular in shape and highly agglomerated. The chemical composition was determined by energy dispersive X-ray spectrometry (EDXS). The characteristic X-ray energy of titanium (Kα = 4.51 keV and Kβ = 4.93 keV), oxygen (Kα = 0.52 keV) and nitrogen (Kα = 0.39 keV) were observed. The functional group was identified by Fourier transform infrared spectrophotometry (FTIR). The wavenumbers in the range 668 to 1389 cm-1 corresponded to vibrations of Ti–O–Ti bond. The wavenumber in the range of 1442 to 1500 cm-1 could be attributed to the nitrogen species in the TiO2 network.


2012 ◽  
Vol 724 ◽  
pp. 295-298
Author(s):  
Qiang Ren ◽  
Yang Yang ◽  
Xiu Lan Wu

To improve the electrochemical performance of LiFePO4, LiFePO4/C composite materials were prepared by solid-state synthesis method with Fe2O3 as one of the starting materials. The phase composition, microstructure and morphology of samples were determined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical performance of samples were characterized by constant current charge-discharge method. The results show that the prepared samples have the single phase, and the carbon coating lead to no change of the crystal structure of LiFePO4. The sample with carbon content of 10wt% shows the best electrochemical properties. Its initial discharge capacity is 144.6 mA·h /g at 0.2C rate. After 30 cycles the capacity remains 131.4 mA·h /g, and the capacity retention rate is 91%.


2020 ◽  
Vol 9 (1) ◽  
pp. 16-22
Author(s):  
Zuffa Anisa ◽  
◽  
Mochammad Zainuri ◽  

Lithium Ferro Phosphate Carbon Composite (LFP/C) had been synthesized using solid-state reaction method. Magnetite sand Fe3O4 was used as Fe- source in LFP/C synthesized. Calcination temperature of the sample performed at 400, 500, and 600°C. The phase and composition of samples determined by Rietveld analysis of X-ray diffraction (XRD) pattern. The dominant identified phase at 400°C was diphosphate LiFeP2O7, and the others phases were nasicon Li3Fe2(PO4)3 and hematite Fe2O3. As the temperature getting higher the diphosphate phase LiFeP2O7 transform to nasicon Li3Fe2(PO4)3.The chemical bonds, lattice vibration and other structural features of the sample were investigated using FTIR spectroscopy in range of 1400 – 400 cm-1. Specific vibration modes in LFP-1 to LFP-3 for each bonding were shown by the high intense in certain wavenumber.


Sign in / Sign up

Export Citation Format

Share Document