TiO2 Nanoparticles Synthesized with Ti(SO4)2 as Precursor via the Hydrothermal Method and their Optical Absorption Properties

2017 ◽  
Vol 727 ◽  
pp. 280-283
Author(s):  
Xiao Ming Fu

Anatase TiO2 particles of about 20 nm in the diameter were successfully synthesized with Ti (SO4)2 as titanium source and stronger ammonia water as precipitant at 240°C for 48 h with pH=5 using the hydrothermal method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS). XRD analysis showed that the phase of the samples was anatase TiO2. TEM analysis confirmed that TiO2 particles of about 50 nm in the diameter were obtained when the pH value was 0.12. With the increasement of the pH value, the size of as-prepared TiO2 particles became remarkably fine. However, with the further increase of the pH value, the size of TiO2 particles was not obvious. TiO2 particles of about 20 nm in the diameter were obtained when the pH value was 5. And UV-VIS results showed that the size of anatase TiO2 nanoparticles, which became small, was propitious to the blue shift of their absorption peak.

2013 ◽  
Vol 873 ◽  
pp. 164-167
Author(s):  
Xiao Ming Fu

ZrO2 nanoparticles with a diameter range of less than 10 nm are successfully synthesized with zirconium nitrate as zirconium source and stronger ammonia water as precipitant at 210 °C for 48 h via the easy hydrothermal method. The phase, the morphologies and optical absorption properties of the samples have been characterized and analyzed by X-ray diffraction (XRD), field-emission transmission electron microscopy (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS), respectively. XRD analysis shows that the phase of as obtained samples is ZrO2. TEM analysis confirms that using stronger ammonia water as precipitant instead of NaOH and the increase of the reaction temperature are in favor of the synthesis of ZrO2 nanoparticles. And UV-VIS measurements show that ZrO2 nanoparticles have a good optical absorption property.


2013 ◽  
Vol 320 ◽  
pp. 11-14
Author(s):  
Xiao Ming Fu

M-ZrO2 nanoparticles with a diameter range of about 10 nm are successfully synthesized with zirconium nitrate as zirconium source and stronger ammonia water as precipitant at 210 °C for 48 h via the easy hydrothermal method. The phase, the morphologies and optical absorption properties of the samples have been characterized and analyzed by X-ray diffraction (XRD), field-emission transmission electron microscopy (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS), respectively. XRD analysis shows that the phase of as obtained samples is M-ZrO2. TEM analysis confirms that the increase of the reaction temperature is in favor of the synthesis of M-ZrO2 nanoparticles. And UV-VIS measurements show that M-ZrO2 nanoparticles have a good optical absorption property.


2012 ◽  
Vol 562-564 ◽  
pp. 490-493
Author(s):  
Xiao Ming Fu

CuO microspheres with a diameter range of 1~3 μm are successfully synthesized with 1 m mol CuCl2 as copper source and 3 m mol Na2CO3 as auxiliary salt at 180 °C for 24 h via the easy hydrothermal method. The phase, the morphologies and optical absorption properties of the samples have been characterized and analyzed by XRD (X-ray diffraction), SEM (Scanning electron microscope) and ultraviolet-visible absorption spectroscopy (UV-VIS), respectively. XRD analysis shows that the phase of as obtained samples is CuO. SEM analysis confirms that the increase of the the auxiliary salt is in favor of the synthesis of CuO microrods. And UV-VIS measurements show that CuO microspheres have a good optical absorption property.


2021 ◽  
Vol 33 (12) ◽  
pp. 2972-2976
Author(s):  
Anju Bala ◽  
Rajeev Sehrawat ◽  
Renu Bala ◽  
Ashutosh Dixit

Organically functionalized manganese doped zinc sulfide (ZnS/Mn) quantum dots were prepared by simple chemical method with polypyrrole (PPy) used as a capping agent. Prepared quantum dots were characterized with Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction microscope (XRD), UV-visible spectroscopy and photoluminescence spectroscopy. Crystalline size of PPy capped ZnS/Mn quantum dots for various concentrations of PPy were approximate 2 nm as analyzed by XRD and TEM analysis. The absorption spectra revealed the occurrence of a blue shift in the peak of absorption and an increase in the band gap value due to the quantum confinement effect. FTIR spectroscopy confirmed that shifting of broad peak at 2335.8 cm–1 was due to S-H stretching vibrations, which confirmed interaction of hydrogen and sulphur in ZnS/Mn/PPy nanocomposites. Uncapped ZnS/Mn and PPy capped ZnS/Mn quantum dots reveal the effective photoluminescence emission spectra in the range of 300-700 nm. With increase the value of capping agent in ZnS/Mn quantum dots, photoluminescence spectra going to red shifting. The photoluminescence properties of the organically functionalized ZnS nanoparticles are favourable for the application in optoelectronic devices.


2019 ◽  
Vol 31 (11) ◽  
pp. 2457-2460
Author(s):  
K.E. Mokubung ◽  
M.J. Moloto ◽  
K.P. Mubiayi ◽  
N. Moloto

Present work reports synthesis of L-cysteine capped CdSe nanoparticles at different temperatures via an aqueous medium, non-toxic and green colloidal route. Cadmium chloride (CdCl2·5H2O) and sodium selenite (Na2SeO3) were used as cadmium and selenium sources respectively. The prepared nanoparticles are characterized by UV-visible absorption and photoluminescence spectroscopy, Fourier transform infrared, X-ray diffraction and transmission electron microscopy. The XRD patterns confirm a cubic phase structure of the prepared nanoparticles at 55, 75 and 95 ºC, respectively. The TEM analysis, optical absorption and photoluminescence spectra shows epitaxial growth of CdSe nanoparticles as the temperature increases with average size diameter of 4.12 ± 0.32, 5.02 ± 0.234 and 5.53 ± 0.321 nm for 55, 75 and 95 ºC, respectively.


2010 ◽  
Vol 160-162 ◽  
pp. 117-122 ◽  
Author(s):  
Zhi Hong Li ◽  
Ji Min Wu ◽  
Shu Jie Huang ◽  
J. Guan ◽  
Xi Zheng Zhang

Strontium hydroxyapatite powders was prepared by the hydrothermal method using Sr(NO3)2 and (NH4)2HPO4 as reagents. Fourier transform infrared spectroscopy, X-ray diffraction, Transmission electron microscope, Energy dispersive X-ray, and Thermogravimetric-differential thermal analysis were employed to investigate the crystalline phase, chemical composition, morphology, and thermal stability of the Strontium hydroxyapatite. And the cytotoxicity of Strontium hydroxyapatite was analyzed through MTT assay. Results showed that Strontium hydroxyapatite prepared by hydrothermal Method has excellent crystal structure, good dispersion, high purity, and rod-like morphology with dimensions 200-500 nm in length and 20 nm in diameter. Meanwhile, the apatite has poor thermal stability. However, the apatite is cytocompatible and may have better biocompatibility, which can serve as strontium source incorporation into calcium phosphate cement and for bone repair.


2014 ◽  
Vol 900 ◽  
pp. 187-190
Author(s):  
Zong Hu Xiao ◽  
Wei Zhong ◽  
Kang Ping Xu ◽  
Yong Huang ◽  
Shui Gen Li ◽  
...  

Terbium-doped zinc oxide (ZnO:Tb) nanocrystals were prepared by a direct reactive precipitation progress. Incorporation of terbium in ZnO nanocrystals had been proved by X-ray diffraction (XRD), transmission electron microscope (TEM) and fluorescence spectrophotometer. XRD investigations confirm that the samples of ZnO:Tb nanocrystals with a hexagonal wurtzite crystalline structure don’t exist the diffraction peaks of the compounds of terbium. The results of TEM analysis show that the as-prepared samples with an average particle size less than 20 nm were obtained. The photoluminescence (PL) spectra suggest that there is no luminescence peaks corresponding to the terbium compounds in ZnO:Tb samples; the green emission intensity gradually decreases with the increase of the Tb-doped concentration in ZnO matrix. A core-shell model of rare earth (RE) passivated ZnO is proposed, which the passivation layer existing on the ZnO surface, can generate a barrier to impede the formation of oxygen vacancy, corresponding to the green emission.


Author(s):  
Luong Huynh Vu Thanh, Tran Nguyen Phuong Lan Luong

This study aims to synthesize and characterize Fe3O4@SiO2 sub-nanoparticles (SNPs) with high saturation magnetization (SM). The research process was conducted in simple and environmentally friendly conditions. The results of ultraviolet-visible (UV-Vis) spectroscopy and X-ray diffraction (XRD) analysis presented that the Fe3O4@SiO2 SNPs were well formed and the phase change of Fe3O4 NPs did not happen in Fe3O4@SiO2 SNPs. Transmission electron microscope (TEM) analysis showed that the Fe3O4@SiO2 SNPs are in a fairly spherical shape with a core/shell structure and a diameter in a range of 100 nm to 500 nm. Fourier transform infrared spectrometry (FT-IR) spectra of Fe3O4@SiO2 SNPs presented some absorption peaks indicating the existence of Si-O-Si, O-Si-O, Fe-O and Fe-O-Si. The SM of Fe3O4 particles and Fe3O4@SiO2 SNPs determined via vibrating sample magnetometer (VSM) were 50.9 emu.g−1 and 19.5 emu.g−1, respectively. All the above results provide clear evidence that the Fe3O4 particles were coated by SiO2 to form sub-nano core/shell with great SM.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1086-1092 ◽  
Author(s):  
YU-SHIANG WU ◽  
YUAN-HAUN LEE ◽  
CHUN-LIANG FENG

Nanosized zinc stannate Zn 2 SnO 4 ( ZTO ) was synthesized via a simple hydrothermal method using sodium hydroxide NaOH as a mineralizer. Hydrothermally treated at 150, 200, and 250°C for 24 h and 48 h, the X-ray diffraction (XRD) pattern showed that highly crystalline ZTO nanostructures could be formed at 200 and 250°C. Transmission electron microscopy (TEM) images showed that ZTO nanocubes were formed at 250°C, and a sheet-like structure was found at 200°C. Raman spectra revealed that ZTO had a spinel structure and there were two Raman shift peaks at approximately 668 and 535 cm-1, which were similar to the peaks of ZTO nanowires. Furthermore, the photocatalytic activity of the ZTO samples was assessed utilizing methylene blue (MB) under ultraviolet irradiation, and the UV-Visible light absorption spectra was investigated to interpret the relationship between photocatalytic properties and light absorptivity. The sheet-like ZTO nanostructures exhibited better photocatalytic activity due to their excellent light absorption properties.


2012 ◽  
Vol 571 ◽  
pp. 43-47
Author(s):  
Ying Jia ◽  
Xing Yun Wang ◽  
Tian Tian Liu ◽  
Guo Gen Xu

ZnO/TiO2 and ZnO/SnO2 composite nanoparticles were prepared by hydrothermal combined-assisted ethanol method , The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS), and the uv-vis absorption performance of which was also characterized by uv-vis diffuse reflective spectrum (UV-vis). The results of the research showed that, in ultraviolet-visible absorption spectra diffuse, the maximum absorption peaks of ZnO/TiO2 and ZnO/SnO2 nanocomposite particles were blue-shift comparing to the pure nanometer ZnO, and there were also weak absorption in the visible region.


Sign in / Sign up

Export Citation Format

Share Document