STRENGTH PROPERTIES OF BACTERIAL CONCRETE CONTAINING FLY ASH

Author(s):  
Ravande Kishore ◽  
Archana Penchala

The Paper describes the comprehensive experimental work carried out on M40 grade bacterial concrete containing fly ash. Two types of common soil bacteria namely, Bacillus Pasteruii and Bacillus Odysseyi with a concentration of 105 cells/ml have been used. The optimum cell concentration of bacteria was arrived at by studying its influence on compressive strength of cement mortar matrix. Fly ash of 10 % by weight of cement was used to partially replace OPC in the concrete mixture. The performance of M40 bacterial concrete containing fly ash was assessed by testing the standard specimen for compressive strength, flexural strength and split tensile strength at different ages of curing. Results of investigation indicate significant improvement in 28 days compressive strength in the range of 12% to 27%. Twenty eight days flexural strength and split tensile strength have also shown appreciable increase in the range of 4% to 14% and 11% to 24% respectively. In general, the results of investigation are encouraging and set in positive direction for use of Bacterial concrete in the construction sector during 21st century.

Author(s):  
Mantu Kumar

Abstract: Among all the current construction materials, concrete occupies a unique position. Concrete is the most often utilised building material. Cement production emits CO2, which is harmful to the environment. One of the most crucial ingredients in concrete production is cement. Experiments were carried out to see how different percentages of Fly Ash and GGBS affected the mechanical qualities of M60 grade concrete. After 7, 14, and 28 days of curing, the compressive strength of concrete cubes with suggested replacement was determined. Compressive strength, split tensile strength, and flexural strength are all evaluated on the cubes, cylinders, and prisms. The primary goal of this study is to compare the fresh and hardened characteristics of M-60 grade control concrete with concrete prepared with varied ratios of fly ash and GGBS Keywords: GGBS, Fly Ash, Durability, Compressive Strength, Tensile Strength, Flexural Strength, Slum cone Test


2020 ◽  
Vol 8 (6) ◽  
pp. 263-269
Author(s):  
Jigyasa Shukla ◽  
Harsh Gupta

This paper present the study of various strength such as compressive strength, split tensile strength and flexural strength during 7 and 28 day. It is construct the specimens size 15cm X 15cm X 15cm for testing purpose which depend upon the size of aggregate. Test results are indicated that strength performance of concrete well as in durability aspect are improved using of Silica fume


Abstract. Light-weight structures are widely used in the construction field. Light-weight fillers such as aggregates can be used to improve weightless structures. Generally, standard aggregates cannot be used to attain the desired weight for light-weight structures. To determine a light-weight filler, the aggregates are made by using fly-ash along with cement mortar. Fly ash was collected from the Mettur Thermal power plant. Cement and fly-ash were mixed in a concrete mixer in a proportion of 30:70 with a water-cement ratio of 0.3 and it is mixed until the pellets are formed. The aggregates are replaced at different percentages such as 0%, 10%, 20%, and 30% respectively to the coarse aggregate. The properties such as compressive strength, split tensile strength and flexural strength were taken. The maximum strength was attained at 30% of fly-ash aggregate with a compressive strength of 46.47 N/mm2, split tensile strength of 14.85 N/mm2 and flexural strength of 3.80 N/mm2.


2021 ◽  
Author(s):  
M. Indhumathi Anbarasan ◽  
S.R. Sanjaiyan ◽  
S. Nagan Soundarapandiyan

Geopolymer concrete (GPC) has significant potential as a more sustainable alternative for ordinary Portland cement concrete. GPC had been introduced to reduce carbon footprints and thereby safeguarding environment. This emerging eco friendly construction product finds majority of its application in precast and prefabricated structures due to the special curing conditions required. Sustained research efforts are being taken to make the product suitable for in situ applications. The developed technology will certainly address the issues of huge energy consumption as well reduce water use which is becoming scarce nowadays. Ground Granulated Blast Furnace Slag (GGBS) a by-product of iron industries in combination with fly ash has proved to give enhanced strength, durability as well reduced setting time. This study investigates the effect of GGBS as partial replacement of fly ash in the manufacture of GPC. Cube and cylindrical specimens were cast and subjected to ambient curing as well to alternate wetting-drying cycles. The 28 day compressive strength, split tensile strength, flexural strength and density of GPC specimens were found. The study revealed increase in compressive strength, split tensile strength, density as well flexural strength up to 40 percent replacement of fly ash by GGBS.


2019 ◽  
Vol 8 (2) ◽  
pp. 2682-2687

Based0on the results obtained from this study0,the following Conclusions seems to be valid. The increase0in percentage replacement of Fly Ash with Metakaoline from 0% to 10.00% causes increase in Slump value up to 5% and beyond that slump is decreased. This0shows workability is reducing as percentage of Metakaoline increased beyond 5%. Hence, 5% replacement of Fly ash with Metakaoline is suitable from workability0point of view. The increase in percentage replacement0of Fly ash with0Metakaoline from 0% to 5% causes increase in compressive strength of concrete from 17.6MPa to 22.6MPa. Further0increase in percentage replacement of Fly ash with Metakaoline from 5% to 10% causes decrease in the0compressive strength from 22.6MPa to 18.7MPa. Hence, 5.00% replacement of Fly Ash with Metakaoline is advisable from compressive strength point of view .The increase in percentage replacement of Fly ash with Metakaoline from 0% to 5% causes increase in0Split Tensile strength of concrete from 3.72MPa to 4.68MPa. Further0increase in0percentage replacement of Fly ash with Metakaoline from 5% to 10% causes decrease in the split Tensile strength from 4.68MPa to 3.94MPa. Hence, 5.00% replacement of Fly Ash with Metakaoline is advisable from Split Tensile strength point of view. The increase in percentage replacement of Fly ash with Metakaoline from 0% to 5% causes increase in0flexural strength of concrete from 3.0 MPa to 3.36 MPa. Further increase in percentage replacement of Fly ash with Metakaoline from 5% to 10% causes decrease in the flexural strength from 3.36MPa to 3.2MPa.Hence 5.00% replacement of fly ash with Metakaoline is advisable from flexural strength point of view.Finally,it can conclude keeping in view of the workability ,compressive strength ,split tensile strength and flexural strength in mind,5% replacement of fly ash with Metakaolin is recommended for use in GEO POLYMER CONCRETE (GPC).


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Tuan Anh Nguyen

Fly ash, a waste product from thermal power plants, is one of the good alternatives for use as a filler in polymers, especially in flame retardants. Fly ash is an environmentally friendly fire retardant additive for composites, used in place of conventional flame retardant additives such as halogenated organic compounds, thus promoting environmental safety. In this study, fly ash was modified with stearic acid to improve adhesion at the polymers interface and increase compatibility. Fly ash was studied at various volumes (5, 10, and 20 wt.% fly ash) used in this study to synthesize fly ash-epoxy composites. The results show that the tensile strength, flexural strength, compressive strength, and impact strength of these synthetic materials increase when fly ash is modified to the surface, compressive strength: 197.87 MPa, flexural strength: 75.20 MPa, impact resistance: 5.77 KJ/m2, and tensile strength: 47.89 MPa. Especially, the fire retardant properties are improved at a high level, with a modified 20% fly ash content: the burning rate of 16.78 mm/min, minimum oxygen index of 23.2%, and meet the fire protection standard according to UL 94HB with a burning rate of 8.09 mm/min. Scanning electron microscopy (SEM) and infrared spectroscopy were used to analyze the morphological structure of fly ash after being modified and chemically bonded with epoxy resin background.


2020 ◽  
Vol 170 ◽  
pp. 06018
Author(s):  
Sandeep L. Hake ◽  
S. S. Shinde ◽  
Piyush K. Bhandari ◽  
P. R. Awasarmal ◽  
B. D. Kanawade

Self Compacting Concrete (SCC) is a specially developed concrete for concreting under extreme condition of inaccessibility from heights. It is capable to flow under influence of its own weight. It could be used when encountered with dense reinforcement and complex structural design. Problem of segregation as well as bleeding is eliminated and vibration is not required for compaction. As concrete is strong in compression and weak in tension. Hence to make it strong in tension, discontinuous Anti-Crack high dispersion glass fibers are added. SCC mix prepared with addition of discontinuous glass fibers is called as Glass Fiber reinforced Self Compacting Concrete (GFRSCC). In this paper an experimental study has been carried out to check the effect of Anti-Crack high dispersion glass fibers on the compressive strength, split tensile strength and flexural strength of SCC. The result show that, as compared to the Normal SCC, the compressive strength of GFRSCC increases by 2.80% and 12.42%, the split tensile strength of GFRSCC increases by 4.47% and 25.12% and the flexural strength of SCC increases by 6.57% and 14.34% when the Cem-FIL Anti-Crack HD glass fibers were added as 0.25% and 0.50% respectively by the weight of total cementitious material contents. The addition of 0.25% Cem-FIL Anti-Crack HD glass fibers to SCC has not much affect on the workability of Normal SCC. Whereas, addition of 0.50% Cem-FIL Anti-Crack HD glass fibers reduces the workability of SCC.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Marinela Barbuta ◽  
Emanuela Marin ◽  
Sorin Mihai Cimpeanu ◽  
Gigel Paraschiv ◽  
Daniel Lepadatu ◽  
...  

The influence of coal fly ash and glass fiber waste on the tensile strength of cement concrete was studied using central composite design. Coal fly ash was used to replace 10% of the cement in the concrete mix. Glass fiber was added to improve the tensile properties of the concrete in different dosages and lengths. In total, 14 mixes were investigated, one only with 10% coal fly ash replacement of cement and the other thirteen were determined by the experimental design. Using analysis of variance, the order of importance of the variables was established for each property (flexural strength and split tensile strength). From the nonlinear response surfaces, it was found that higher values of flexural strength were obtained for fibers longer than 12 mm and at a dosage of 1-2%. For split tensile strength, higher values were obtained for fibers with a length of 19–28 mm and at a dosage of 1–1.5%.


Sign in / Sign up

Export Citation Format

Share Document