scholarly journals STUDY AND ANALYSIS OF EFFECT OF STRENGTH PROPERTIES IN CALCINED KAOLIN AND SILICA FUME

2020 ◽  
Vol 8 (6) ◽  
pp. 263-269
Author(s):  
Jigyasa Shukla ◽  
Harsh Gupta

This paper present the study of various strength such as compressive strength, split tensile strength and flexural strength during 7 and 28 day. It is construct the specimens size 15cm X 15cm X 15cm for testing purpose which depend upon the size of aggregate. Test results are indicated that strength performance of concrete well as in durability aspect are improved using of Silica fume

2018 ◽  
Vol 7 (2.12) ◽  
pp. 437
Author(s):  
V R.Prasath Kumar ◽  
K Gunasekaran ◽  
Sreerag K P

High standing estimation of building materials utilized for development is a component of incredible concern. Coconut shell as a completely substitution in the place of coarse aggregate may totally effective for designers in construction industry. The coconut shell concrete is a light weight solid which may decrease the self-heap of a structure. The under taken project depends on inspecting attributes of coconut shell concrete when contrasted with conventional concrete. Coconut shells going from 10mm strainer and held on 6.3mm were considered to utilize for this study. For the current study M100 grade concrete is used to cast the specimens. The principle properties considered testing on coconut shell concrete and conventional concrete is compressive strength, split tensile strength and flexural strength. Examples were taken by supplanting coarse aggregate with coconut shells completely and cement is supplanted by silica fume with various extents of 5%, 10%, 15%, 20%, 25% for compressive strength test and tests were done at 3, 7, 28, 56 and 90 days of curing, it is observed that the ideal compressive strength outcomes were obtained at 10% of silica fume. The flexural strength and  split tensile strength of the specimens are calculated with replacement of cement by silica fume with  different extents of 0%, 5%, 10% and 15%, tests were done at 3, 7 and 28 days of curing. The optimum replacement percentage of cement by silica fume is 10% for compressive strength, split tensile and flexural strength. The primary principle is to lessen the utilization of natural aggregate by supplanting them with coconut shells and to decrease the density of concrete which makes concrete for simple dealing.  


Author(s):  
Mantu Kumar

Abstract: Among all the current construction materials, concrete occupies a unique position. Concrete is the most often utilised building material. Cement production emits CO2, which is harmful to the environment. One of the most crucial ingredients in concrete production is cement. Experiments were carried out to see how different percentages of Fly Ash and GGBS affected the mechanical qualities of M60 grade concrete. After 7, 14, and 28 days of curing, the compressive strength of concrete cubes with suggested replacement was determined. Compressive strength, split tensile strength, and flexural strength are all evaluated on the cubes, cylinders, and prisms. The primary goal of this study is to compare the fresh and hardened characteristics of M-60 grade control concrete with concrete prepared with varied ratios of fly ash and GGBS Keywords: GGBS, Fly Ash, Durability, Compressive Strength, Tensile Strength, Flexural Strength, Slum cone Test


Author(s):  
Ravande Kishore ◽  
Archana Penchala

The Paper describes the comprehensive experimental work carried out on M40 grade bacterial concrete containing fly ash. Two types of common soil bacteria namely, Bacillus Pasteruii and Bacillus Odysseyi with a concentration of 105 cells/ml have been used. The optimum cell concentration of bacteria was arrived at by studying its influence on compressive strength of cement mortar matrix. Fly ash of 10 % by weight of cement was used to partially replace OPC in the concrete mixture. The performance of M40 bacterial concrete containing fly ash was assessed by testing the standard specimen for compressive strength, flexural strength and split tensile strength at different ages of curing. Results of investigation indicate significant improvement in 28 days compressive strength in the range of 12% to 27%. Twenty eight days flexural strength and split tensile strength have also shown appreciable increase in the range of 4% to 14% and 11% to 24% respectively. In general, the results of investigation are encouraging and set in positive direction for use of Bacterial concrete in the construction sector during 21st century.


2014 ◽  
Vol 670-671 ◽  
pp. 437-440 ◽  
Author(s):  
Fan Wang ◽  
Shan Suo Zheng ◽  
Xiao Fei Wang

With the improvement of concrete materials and the emergence of new materials, adding silica fume to high-performance concrete (HPC) has been one of the important ways in concrete technology. In this paper, through experimental study on the mechanical performance of HPC with 5%, 10%, 15% and 20% silica fume replacing cement for different water-binder ratio, along with polycarboxylates high performance water-reducing admixture, silica fume has large effects on 28d compressive strength, split tensile strength and flexural strength of the HPC. Meanwhile, due to the different level of water-binder ratio, the relationship between split tensile strength, flexural strength and compressive strength is also obvious linear.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2020 ◽  
Vol 170 ◽  
pp. 06018
Author(s):  
Sandeep L. Hake ◽  
S. S. Shinde ◽  
Piyush K. Bhandari ◽  
P. R. Awasarmal ◽  
B. D. Kanawade

Self Compacting Concrete (SCC) is a specially developed concrete for concreting under extreme condition of inaccessibility from heights. It is capable to flow under influence of its own weight. It could be used when encountered with dense reinforcement and complex structural design. Problem of segregation as well as bleeding is eliminated and vibration is not required for compaction. As concrete is strong in compression and weak in tension. Hence to make it strong in tension, discontinuous Anti-Crack high dispersion glass fibers are added. SCC mix prepared with addition of discontinuous glass fibers is called as Glass Fiber reinforced Self Compacting Concrete (GFRSCC). In this paper an experimental study has been carried out to check the effect of Anti-Crack high dispersion glass fibers on the compressive strength, split tensile strength and flexural strength of SCC. The result show that, as compared to the Normal SCC, the compressive strength of GFRSCC increases by 2.80% and 12.42%, the split tensile strength of GFRSCC increases by 4.47% and 25.12% and the flexural strength of SCC increases by 6.57% and 14.34% when the Cem-FIL Anti-Crack HD glass fibers were added as 0.25% and 0.50% respectively by the weight of total cementitious material contents. The addition of 0.25% Cem-FIL Anti-Crack HD glass fibers to SCC has not much affect on the workability of Normal SCC. Whereas, addition of 0.50% Cem-FIL Anti-Crack HD glass fibers reduces the workability of SCC.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
J. Rex ◽  
B. Kameshwari

The lightweight aggregate is an aggregate that weighs less than the usual rock aggregate and the quarry dust is a rock particle used in the concrete for the experimentation. The significant intention of the proposed technique is to frame a mathematical modeling with the aid of the optimization techniques. The mathematical modeling is done by minimizing the cost and time consumed in the case of extension of the real time experiment. The proposed mathematical modeling is utilized to predict four output parameters such as compressive strength (Mpa), split tensile strength (Mpa), flexural strength (Mpa), and deflection (in mm). Here, the modeling is carried out with three different optimization techniques like genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) with 80% of data from experiment utilized for the training and the remaining 20% for the validation. Finally, while testing, the error value is minimized and the performance obtained in the ACO for the parameters such as compressive strength, split tensile strength, flexural strength, and deflection is 91%, 98%, 87%, and 94% of predicted values, respectively, in the mathematical modeling.


In this paper various mix proportions of Reactive Powder Concretes were formulated using ordinary Portland cement, Fly ash, Micro silica, Silica Fume, Quartz powder etc and these concretes were subjected to strength test. The best mix was selected for further in depth study with fibers like Sisal fiber, Coir fiber, Hair fiber and Polypropylene fiber mixed Reactive Powder Concrete and the various tests have been performed Cube Compressive strength, Cylinder Compressive strength, Flexural strength, Split Tensile strength, Shear test, Water absorption, Sorptivity and Chloride diffusion etc. As a result, fiber incorporated concrete shows increasing Flexural strength, splitting tensile strength, and shear strength up to 30% as compared to control RPC and gives minimal decrease in compressive strength by the addition of fibers. These characteristics make it as a promising material for casting non structural elements such as pressure pipes, flooring tiles, Partition panels, door and window frames. It can also be used as repair materials.


The present Investigation is aimed at utilizing low cost material Dolomite powder and waste material Quarry dust as partial replacement of cement and sand in concrete. This experimental investigation is carried out in three stages. In 1st stage M25 grade of concrete is produced by replacing cement by 0%, 6%, 12% and 18% of Dolomite Powder. In 2nd Stage concrete is produced by keeping the optimum 12% of dolomite powder as constant and sand is replaced by quarry dust in the percentage of 0%, 25%, 35% and 45%. In 3rd stage the optimum percentage of Dolomite Powder and Quarry Dust (DP+QD) Concrete are used to determine the compressive strength, split tensile strength and flexural strength of concrete and to check the flexural behavior of RCC beams. It is found that the concrete made of low cost material dolomite powder and waste material quarry dust increases the compressive strength, split tensile strength and flexural strength of concrete when compared to that of normal concrete. It also concluded that the first crack load and ultimate load of dolomite powder and quarry dust reinforced concrete beams increases when compared with normal reinforced concrete beams. From study it is concluded that the low cost material Dolomite powder & Quarry dust can be used in construction works which results in construction cost. By using natural resources the environment is protected.


Sign in / Sign up

Export Citation Format

Share Document