STUDY OF REPLACEMENT OF SAND BY EXPANDED POLYSTYRENE IN STRUCTURAL LIGHTWEIGHT CONCRETE

Author(s):  
Mateus Titon Tostes ◽  
Daniel Hastenpflug

The search for more efficient concrete structures requires use of new materials in the developed of new concretes. With this objective, it was proposed in this study the substitution of Part of the medium sand of the lightweight structural concrete for expanded polystyrene (PS). It was replaced 5%, 10% and 20% of the sand to observe the changes in compressive strength, flowability, absorption, density and modulus of elasticity of these concretes. The results of the study show that there was an increase in the absorption and loss in the compressive strength and modulus of elasticity. Also, there was a significant increase in the flowability and reduction in the density of these concretes. Even with the replacement of part of the medium sand by expanded polystyrene, the concretes developed were classified as lightweight structural concretes, showing the applicability of this substitution in concrete designs.

2010 ◽  
Vol 3 (2) ◽  
pp. 195-204 ◽  
Author(s):  
W.G Moravia ◽  
A. G. Gumieri ◽  
W. L. Vasconcelos

Nowadays lightweight concrete is used on a large scale for structural purposes and to reduce the self-weight of structures. Specific grav- ity, compressive strength, strength/weight ratio and modulus of elasticity are important factors in the mechanical behavior of structures. This work studies these properties in lightweight aggregate concrete (LWAC) and normal-weight concrete (NWC), comparing them. Spe- cific gravity was evaluated in the fresh and hardened states. Four mixture proportions were adopted to evaluate compressive strength. For each proposed mixture proportion of the two concretes, cylindrical specimens were molded and tested at ages of 3, 7 and 28 days. The modulus of elasticity of the NWC and LWAC was analyzed by static, dynamic and empirical methods. The results show a larger strength/ weight ratio for LWAC, although this concrete presented lower compressive strength.


2016 ◽  
Vol 841 ◽  
pp. 200-209 ◽  
Author(s):  
Rezuwan Kamaruddin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Muhammad Faheem Mohd Tahir ◽  
Januarti Jaya Ekaputri

Oil palm clinker is formed by burning of oil palm kernel shell and fibrous materials in boiler furnace. The clinker is no longer a bio-material that has changed to inert material likes the crushed brick. Large quantities oil palm clinkers have become a waste and caused disposal problem. It requires extra costs for handling, transportation and finding out suitable the dumping site. Research has been conducted to explore the potentiality usage of oil palm clinker as fine and coarse lightweight aggregates at Universiti Pertanian Malaysia. Mixtures of oil palm clinker concretes were designed, prepared and tested. Mechanical properties of a good mixture of tensile strength, compressive strength, modulus of elasticity, creep and shrinkage were satisfied the standard engineering codes of practices. Oil palm clicker concrete was found lighter than conventional concrete, which usually weighs between 2240 and 2400 kg m-3. The means of compressive and tensile strengths were found 30.79 and 3.34 N mm-2 respectively. In addition, the mean of modulus of elasticity was 13.024 kNmm-2. Therefore, oil palm clinker aggregate and concrete are recommended to be used in lightweight reinforced concrete structures.


2015 ◽  
Vol 67 (17) ◽  
pp. 954-962 ◽  
Author(s):  
Yi Xu ◽  
Linhua Jiang ◽  
Jinxia Xu ◽  
Hongqiang Chu ◽  
Yang Li

2020 ◽  
Vol 853 ◽  
pp. 165-170
Author(s):  
Siti Nurul Ain Ali ◽  
Amirah Mohamad Juri ◽  
Kartini Kamaruddin ◽  
Mohd Hisbany Mohd Hashim ◽  
Hamidah Mohd Saman

Expanded polystyrene (EPS) concrete is a promising material as lightweight features, environment-friendly materials and potentially used in lightweight building construction. However, EPS concrete has substantially affected the transition zone of elastic behavior of the element. This paper aims to evaluate the modulus of elasticity (MOE) from the compression test method for the EPS concrete. The MOE also was predicted through existing models in codes of practice using actual data from compressive strength and density of EPS concrete. To verify the proposal of a new empirical model from EPS concrete, the actual and prediction of MOE were compared. The EPS concrete specimens were based on EPS replacements and design mixtures. From the outcome of the study, it demonstrated significant improvements in strength and in the elasticity modulus were observed in the implementation of the dry press moulding for concrete mixtures.


2021 ◽  
Vol 1033 ◽  
pp. 163-171
Author(s):  
Alexandra Reto ◽  
Renzo Sanabria ◽  
José Rodriguez ◽  
Alexandra Hinostroza

The precast concrete elements in the construction of buildings are increasingly used due to their better quality control, constructive speed, reduction of the number of workers and less waste of resources compared to conventional construction; for wall applications, to these advantages, the design to ensure thermal comfort requires the improvement of the low thermal insulation of conventional concrete panels. The use of materials with lower thermal conductivity such as Expanded PolyStyrene Beads (EPSB) in lightweight concrete for the construction of precast panels in housing, contributes to improve thermal insulation and the saving operational energy during its operation phase, because the aggregate has a small size, low density and thermal conductivity; applied in higher volumes in concrete, reduces indoor heat loss in cold climates and indoor heat gain in warm climates in housing. The purpose of this research is to study the behavior of lightweight concrete with EPSB for 16%, 26% and 36% addition and evaluate the air-dry density, compressive strength, thermal conductivity, relationship between air-dry density with compressive strength and thermal conductivity. The results indicate that the higher the percentage of EPSB the air-dry density, compressive strength and thermal conductivity decrease; the relationships between air-dry density with compressive strength and thermal conductivity follow a linear trend and are similar.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Khaled Sobhan ◽  
Dronnadula V. Reddy ◽  
Fernando Martinez

Purpose The exposure of reinforced concrete structures such as high-rise residential buildings, bridges and piers to saline environments, including exposure to de-icing salts, increases their susceptibility to corrosion of the reinforcing steel. The exposure to fire can further deteriorate the structural integrity of corroded concrete structures. This combined effect of corrosion damage and fire exposure is not generally addressed in the structural concrete design codes. The synergistic combination of the effects of corrosion and fire forms the basis of this paper. Design/methodology/approach Concrete beam specimens with different strengths were prepared, moist-cured and corroded with impressed current. Later, they were “crack-scored” for corrosion evaluation, after which half were exposed to fire in a gas kiln. The fire damage was evaluated by nondestructive testing using ultrasonic pulse velocity. Next, all specimens were tested for residual flexural strength. They were then autopsied, and the level of corrosion was determined based on mass loss of the reinforcement. Findings For corroded specimens, the flexural capacity loss because of fire exposure increases as the compressive strength increases. In general, the higher the crack score, the higher the corresponding mass loss, unless some partial/segmental debonding of the reinforcement occurred. The degree of corrosion increases with decreasing compressive strength. The residual moment capacity, based on analytically determined capacities of uncorroded and nonfire-exposed beams, was significantly lower than those of uncorroded beams exposed to fire. Originality/value The combined effects of corrosion and fire on the mechanical properties of structural concrete are relatively unknown, and no guidance is available in the existing design codes to address this issue. Accordingly, the findings of the paper are expected to be valuable to both researchers and design engineers and can be regarded as the initial investigation on this topic.


2018 ◽  
Vol 251 ◽  
pp. 01027
Author(s):  
Duc Hoang Minh ◽  
Ly Le Phuong

Expanded polystyrene lightweight concrete is a composite which can be made by adding expanded polystyrene aggregate in normalweight concrete (as matrix). The research was focused on the effect of properties and volume of the matrix on the properties of lightweight concrete. The results show that properties of structural polystyrene concrete, such as workability and compressive strength, depend on the aggregate size of the matrix. It also shows that decreasing aggregate size of the matrix is the effective way to increase workability and compressive strength of lightweight concrete. When the density of concretes decrease by 200 kg/m³, slump values decrease by about 20 to 30 mm with lightweight concrete mixtures using maximum particle size of 0.63 mm, while slump values decrease by about 40 mm with the mixtures using maximum particle size of 20 mm. At the same density, the compressive strength of the structural polystyrenre concrete significantly decreased when the coarse aggregate diameter greater than 10 mm. Therefore, coarse aggregates with diameter size are smaller than 10 mm was recommended to use for matrix. In the result, expanded polystyrene concrete with density from 1,400 kg/m³ to 2,000 kg/m³ and compressive strength more than 20 MPa for structural application was made.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Slamet Widodo ◽  
Iman Satyarno ◽  
Sri Tudjono

Lightweight concrete application in construction field is growing rapidly in these recent years due to its advantages over ordinary concrete. In this paper, pumice breccia which can be found abundantly in Indonesia is proposed to be utilized as the coarse aggregate. In spite of its benefits, lightweight concrete exhibits more brittle characteristics and lower tensile strength compared with normal concrete. On the other hand, fiber addition into concrete has become widely used to improve its tensile properties. Furthermore, the utilization of hybrid fiber in a suitable combination may potentially improve the mechanical properties of concrete. This paper experimentally examines the effects of hybrid polypropylene-steel fiber addition on some hardened properties of pumice breccia aggregate lightweight concrete. Five groups of test specimens with fixed volume fraction of polypropylene fiber combined with different amounts of steel fiber were added in concrete to investigate the density, compressive strength, modulus of elasticity, splitting tensile strength, and the modulus of rupture of the concrete mixtures. Test results indicate that hybrid fiber addition leads to significant improvement to the compressive strength, modulus of elasticity, splitting tensile strength, and the modulus of rupture of the pumice breccia lightweight aggregate concrete and meet the specification for structural purposes.


2017 ◽  
Vol 3 (8) ◽  
pp. 594-609 ◽  
Author(s):  
Bengin Herki

The environmental impacts of the construction industry can be minimised through using waste and recycled materials to replace natural resources. Results are presented of an experimental study concerning capillary transport of water in concrete incorporating densified expanded polystyrene (EPS) as a novel aggregate. A new environmentally friendly technique of densifying was used to improve the resistance to segregation of EPS beads in concrete. Twelve concrete mixes with three different water/cement ratios of 0.6, 0.8 and 1.0 with varying novel aggregate content ratios of 0, 30, 60 and 100% as partial replacement for natural aggregate by equivalent volume were prepared and tested. Total absorption, absorption by capillary action, and compressive strength was determined for the various concrete mixes at different curing times. The results indicated that there is an increase in total water absorption (WA) and capillary water absorption (CWA) and a decrease in compressive strength with increasing amounts of the novel aggregate in concrete. However, there is no significant difference between the CWA of control and concretes containing lower replacement level.


2020 ◽  
Vol 329 ◽  
pp. 04010
Author(s):  
Galina Okolnikova ◽  
Lina Abass Saad ◽  
Majeed M. Haidar ◽  
Fouad adnan noman Abdullah Al-shaibani

The ability of concrete to give a lower weight and retain good properties for strength is very important concrete structures. Lightweight concrete is known for its brittleness hence the strengthening of the concrete with dispersed chopped fiber is necessary. The addition of dispersed chopped fiber in polystyrene concrete to check the effect of the fiber this concrete the main objective of this paper. The experimental method of research was used in this research paper after a proper review of previous works by other researchers were done. 42 grams of fiber were added in the concrete mix of each composition. The results of this research show a noticeable effect of fiber in the lightweight expanded polystyrene concrete. The concrete without fiber showed the best compressive strength followed by the concrete with dispersed polypropylene fiber.


Sign in / Sign up

Export Citation Format

Share Document