METROLOGICAL SUPPORT FOR THE VERIFICATION OF MEDICAL INFRARED THERMOMETERS

2021 ◽  
pp. 26-32
Author(s):  
M. V. Golobokov

The paper analyzes two methods of checking medical infrared thermometers – using the black body model and using the gray body model. The use of black body models provides the highest accuracy of temperature reproduction. Direct verification of infrared thermometers is not possible due to the discrepancy between the emissivity value entered in the infrared thermometer and the emissivity value of the black body. In this paper, we propose an algorithm for calculating corrections to the value of the temperature reproduced by the black body. The values of the corrections for different temperatures and emissivity introduced in infrared thermometers are given. Using the gray body model does not require any additional calculations. A model of a gray body with an emissivity from 0.94 to 0.99 has been developed and studied. The advantage of the proposed design is low cost, ease of practical application, and the possibility of simultaneous verification of infrared thermometers with different set emissivity values. For each of the methods, an algorithm for estimating the measurement uncertainty during verification is proposed. The results of the research can be used in testing medical infrared thermometers for type approval and the development of verification methods.

1995 ◽  
Author(s):  
Svetlana P. Morozova ◽  
Boris E. Lisiansky ◽  
Pavel A. Morozov ◽  
Victor I. Sapritsky ◽  
U. A. Melenevsky ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3817
Author(s):  
Nicholas Wei-Jie Goh ◽  
Jun-Jie Poh ◽  
Joshua Yi Yeo ◽  
Benjamin Jun-Jie Aw ◽  
Szu Cheng Lai ◽  
...  

Fever is a common symptom of many infections, e.g., in the ongoing COVID-19 pandemic, keeping monitoring devices such as thermometers in constant demand. Recent technological advancements have made infrared (IR) thermometers the choice for contactless screening of multiple individuals. Yet, even so, the measurement accuracy of such thermometers is affected by many factors including the distance from the volunteers’ forehead, impurities (such as sweat), and the location measured on the volunteers’ forehead. To overcome these factors, we describe the assembly of an Arduino-based digital IR thermometer with distance correction using the MLX90614 IR thermometer and HC-SR04 ultrasonic sensors. Coupled with some analysis of these factors, we also found ways to programme compensation methods for the final assembled digital IR thermometer to provide more accurate readings and measurements.


2021 ◽  
Author(s):  
Jingjing Yu ◽  
Bihao Hu ◽  
Chuanlan Xu ◽  
Jiazhi Meng ◽  
Shu Yang ◽  
...  

Nickel is widely researched in the electrooxidation of borohydride due to its low cost and abundant reserves, but it’s catalytic activity and stability need to be improved for practical application....


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 913
Author(s):  
Jinyi Wang ◽  
Sen Yang

The development of low-cost and high-efficiency catalysts for wastewater treatment is of great significance. Herein, nanoporous Cu/Cu2O catalysts were synthesized from MnCu, MnCuNi, and MnCuAl with similar ligament size through one-step dealloying. Meanwhile, the comparisons of three catalysts in performing methyl orange degradation were investigated. One of the catalysts possessed a degradation efficiency as high as 7.67 mg·g−1·min−1. With good linear fitting by the pseudo-first-order model, the reaction rate constant was evaluated. In order to better understand the degradation process, the adsorption behavior was considered, and it was divided into three stages based on the intra-particle diffusion model. Three different temperatures were applied to explore the activation energy of the degradation. As a photocatalytic agent, the nanoporous structure of Cu/Cu2O possessed a large surface area and it also had low activation energy, which were beneficial to the excellent degradation performance.


2021 ◽  
Vol 21 (12) ◽  
pp. 6048-6053
Author(s):  
Qi Wang ◽  
Mingwei Li ◽  
Yao Xie ◽  
Yun Ou ◽  
Weiping Zhou

With the rapid development of the electronics industry, electronic products based on silicon and glass substrates electronic products will gradually be unable to meet the rising demand. Flexibility, environmental protection, and low costs are important for the development of electronic products. In this study, an efficient and low-cost method for preparing silver electrode structures by direct writing on paper has been demonstrated. Based on this method, a flexible paper-based sensor was prepared. The liquid printing ink used mainly comprises a precursor liquid without pre-prepared nanomaterials. The precursor liquid is transparent with good fluidity. Simple direct writing technology was used to write on the paper substrate using the precursor ink. When the direct-writing paper substrate was subsequently heated, silver nanostructures precipitated from the precursor liquid ink onto the paper substrate. The effect of different temperatures on the formation of the silver nanostructures and the influence of different direct writing processes on the structures were studied. Finally, a paper-based flexible sensor was prepared for finger-bending signal detection. The method is simple to operate and low in cost and can be used for the preparation of environment-friendly paper-based devices.


1932 ◽  
Vol 6 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Jacob Biely ◽  
William Roach

The results obtained with the rapid whole blood agglutination test for pullorum disease, applied in the field, agree closely with the results secured with the rapid serum agglutination test, applied in the laboratory.The accuracy of the diagnosis was found to depend upon the training and experience of the technician. When the whole blood agglutination test was applied by inexperienced persons, the results obtained differed from the laboratory test by 12% as compared with a difference of 1.3% when the whole blood agglutination test was applied by an experienced technician.The rapid whole blood agglutination test was found to lend itself very readily to practical application in the field. The extremely low cost makes feasible the application and repetition of the test on a large scale.Since it is known from previous work that one agglutination test will not eliminate all carriers of pullorum disease, the rapid whole blood agglutination test should be applied several times a year until at least two successive negative tests are obtained on each bird of the flock.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Bàrbara Micó-Vicent ◽  
María López ◽  
Azucena Bello ◽  
Noelia Martínez ◽  
Francisco Martínez-Verdú

Solar thermal coatings are designed to achieve the highest incident solar flux into the receiver of a tower solar plant. These materials are subjected to extreme working conditions of temperature and solar concentrated radiation. Much effort is being made to develop a durable and high absorptive coating that can provide an excellent solar to heat conversion efficiency. Complex deposition techniques (PVD, CVD, electrodeposition, etc.) are developed and tested to achieve solar selectivity. High solar absorptance paints are an alternative technique, that is, easy to apply and implement in the field. In paint, pigments are the compound that provides high absorptance values, whose stability impacts the durability of optical properties. The search for new selective solar pigments for solar receivers is a promising route to improve the efficiency of this technology. In this work, novel nanocomposites were synthesized from low-cost organic materials such as table sugar. Promising results were obtained when intercalated and calcined in the laminar structure of montmorillonite, a type of smectite clay. The pigments were tested in a paint format on metallic coupons at different temperatures to obtain absorptivities above 96% of absorptance after 24 h at 700  °C. Further experiments are still needed to obtain optimum conditions to maximize the coating's absorptivity and durability at high temperature.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3386 ◽  
Author(s):  
Wei Wang ◽  
Jinsong Du ◽  
Jie Gao

Continuous waveform (CW) radar is widely used in intelligent transportation systems, vehicle assisted driving, and other fields because of its simple structure, low cost and high integration. There are several waveforms which have been developed in the last years. The chirp sequence waveform has the ability to extract the range and velocity parameters of multiple targets. However, conventional chirp sequence waveforms suffer from the Doppler ambiguity problem. This paper proposes a new waveform that follows the practical application requirements, high precision requirements, and low system complexity requirements. The new waveform consists of two chirp sequences, which are intertwined to each other. Each chirp signal has the same frequency modulation, the same bandwidth and the same chirp duration. The carrier frequencies are different and there is a frequency shift which is large enough to ensure that the Doppler frequencies for the same moving target are different. According to the sign and numerical relationship of the Doppler frequencies (possibly frequency aliasing), the Doppler frequency ambiguity problem is solved in eight cases. Theoretical analysis and simulation results verify that the new radar waveform is capable of measuring range and radial velocity simultaneously and unambiguously, with high accuracy and resolution even in multi-target situations.


2011 ◽  
Vol 201-203 ◽  
pp. 643-646 ◽  
Author(s):  
Bo Yan Xu ◽  
Hai Ying Tian ◽  
Jie Yang ◽  
De Zhi Sun ◽  
Shao Li Cai

SNCR (Selective Non Catalytic Reduction) system is proposed, with 40% methylamine aqueous solution as reducing agent to reduce NOx in diesel exhaust gas. The effect of injection position and volume on the reduction efficiency through the test bench is systematically researched. A three-dimensional model of a full-sized diesel SNCR system generated by CFD software FIRE is used to investigate the reduction efficiency under different temperatures. The simulated results have a good agreement with the test results, and it can be used to optimize SNCR system. The results can indicate the practical application of this technology.


Sign in / Sign up

Export Citation Format

Share Document