Fabrication and Structural Properties of Ni50 Al50 Alloy by Mechanical Alloying

2021 ◽  
Vol 19 (7) ◽  
pp. 110-114
Author(s):  
H.M. Abdul Majeed ◽  
I.K. Jassim ◽  
A.S. Mahmood

In the present study, mechanical alloying process was employed for preparation of the nanocrystalline Ni50Al50 alloy through ball mill method. The structure properties of the alloy at various milling times of 0, 2, 4, 6 and 8hr were studied by X-ray diffraction and scanning electron microscopy (SEM) measurements. Several phases was formed successfully after 4hr of milling. At 6hr of milling, new intermetallic compound type (Ni3AI) was observed prospering, The particle size for various milling times decreased significantly, with increasing time of milling. The resulted morphology the milled powder shows a reduction of particle size which is in accordance with the XRD patterns. The results of EDX shows clearly atypical spectrums of both Ni and Al peaks.

2012 ◽  
Vol 531-532 ◽  
pp. 437-441 ◽  
Author(s):  
Qi He ◽  
Tao Liu ◽  
Jian Liang Xie

Fe-Ni-Cr alloy powders with the different components were prepared by Mechanical Alloying (MA). The phase structure, grain size, micro-strain and lattice distortion were determined with X-ray diffraction. The morphology and particle size of the powders were observed and analyzed using a field emission scanning electron microscopy. The results showed that the Fe-Ni-Cr nanocrystalline powders could be obtained by MA. The ball milling time could be reduced with increasing amount of Cr, resulting the formation of Fe-Ni-Cr powders. With the increasing amount of Cr, the speed of Ni diffusion to Fe lattice approaching saturation became more rapid. The particle size got smaller as the ball milling went further; the extent of micro-strain and distortion of lattice intensified; the solid solubility of Ni and Cr in Fe was increased. Finally the super-saturated solid solution of Fe was obtained.


2011 ◽  
Vol 298 ◽  
pp. 215-219
Author(s):  
Ge Wang ◽  
Zhi Gang Chao ◽  
Yu Ying Zhu ◽  
Dong Dong Hu ◽  
Xing Hua Wang ◽  
...  

Fe50Ni30B20 amorphous Alloys powder was prepared by mechanical alloying (MA) with a high-energy planetary ball mill. The composition and non-crystallization changing process of the as-milled powder were studied by X-ray diffractometry (XRD). The microstructure and shape of the amorphous alloys powder was observed by scanning electron microscope (SEM). Thermodynamic properties and crystallization kinetics behavior of the as-milled amorphous alloys powder were measured by differential scanning calorimeter (DSC).


2013 ◽  
Vol 275-277 ◽  
pp. 1751-1754
Author(s):  
Zhang Jing ◽  
Qi Zhi Cao ◽  
Zheng Liang Li

Nanostructured Al-25at.%Fe-5at.%Ni intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). The solid solutions of Fe (Al) and Ni (Fe) in the Al70Fe25Ni5 system are observed at the early milling stage. The solid solutions transforms into amorphous and disordered Al (Fe, Ni) phase. The last milling products in the Al70Fe25Ni5 system are Al3Ni2, AlFe3 and AlFe0.23Ni0.77 phases.


2011 ◽  
Vol 695 ◽  
pp. 429-432 ◽  
Author(s):  
Jun Zhou ◽  
Xin Zhe Lan ◽  
Ping Ren ◽  
Qiu Li Zhang ◽  
Yong Hui Song ◽  
...  

The flower-sphere molybdenum disulfide has been synthesized by reaction of Na2MoO4 and CS(NH2)2 with NH2OH·HCl or H2C2O4 as reductant. The microstructure and chemical composition of the product were characterized by means of X-ray diffraction and scanning electron microscope. XRD patterns showed that the molar ratio of Mo to S had a great effect on the purity of the product. When the molar ratio of Mo to S was 1:5, the product was nearly pure MoS2. SEM images showed that the particle size increased as the molar ratio of Mo to S reduced. The MoS2 microspheres had rough surfaces and were constructed with sheet-like structures in the two systems. But the product from the system of NH2OH·HCl as reductant has the bigger particle size, clearer petal-sheets, coarser surface and weaker agglomeration than that from the system H2C2O4 as reductant. The possible chemical reactions in hydrothermal systems were preliminarily discussed.


2008 ◽  
Vol 591-593 ◽  
pp. 147-153
Author(s):  
Gilbert Silva ◽  
Erika Coaglia Trindade Ramos ◽  
N.S. da Silva ◽  
Alfeu Saraiva Ramos

A large amount of the Ti6Si2B compound can be formed by mechanical alloying and subsequent heat treatment from the elemental Ti-22.2at%Si-11.1at%B powder mixture, but the yield powder after ball milling is reduced due to an excessive agglomeration of ductile particles on the balls and vial surfaces. This work reports on the structural evaluation of Ti-22.2at%Si-11.1at%B powders milled with PCA addition, varying its amount between 1 and 2 wt-%. The milling process was carried out in a planetary ball mill under argon atmosphere, and the milled powders were then heated at 1200oC for 1h under Ar atmosphere in order to obtain equilibrium structures. Samples were characterized by X-ray diffraction, scanning electron microscopy, and thermal analysis. Results revealed that the PCA addition reduced the excessive agglomeration during the ball milling of Ti-22.2at-%Si-11.1at-%B powders. After heating at 1200oC for 1h, the Ti5Si3, Ti3O and/or Ti2C phases were preferentially formed in Ti-22.2at%Si-11.1at%B powders milled with PCA addition, and the Ti6Si2B formation was inhibited.


2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2018 ◽  
Vol 29 (1) ◽  
pp. 168
Author(s):  
Tunis Balassim Hassan

Pure and Nickel oxide doped chromium (III) oxide (Cr2O3) nanoparticals are synthesized by hydrothermal technique. The effect of dopant Ni concentration on the structural behavior of Cr2O3 nanoparticles was examined by X-ray diffraction. The average crystallite size of the synthesized nanoparticles was measured from XRD patterns using Scherrer equation and was decreased from 22nm to 12.9 nm with the increasing Nio concentration in Cr2O3 from (0, 0.01, 0.06, and 0.10). Morphologies and compositional elements of the synthesized nanoparticles were observed by the field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy, respectively. The optical property of the samples was measured by ultraviolet - visible (UV-Vis.) absorption spectroscopy. The observed optical band gap value ranges from 2.3eV to 2.5eV for Ni doped nanoparticles


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 305 ◽  
Author(s):  
Yan Zhang ◽  
Hui Zhang ◽  
Fang Wang ◽  
Li-Xia Wang

The ginger essential oil/β-cyclodextrin (GEO/β-CD) composite, ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) particles and ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) microsphere were prepared with the methods of inclusion, ionic gelation and spray drying. Their properties were studied by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo-gravimetry analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the particle size of GEO/β-CD composite was smaller than that of β-CD and GEO/β-CD/CTS particles were loose and porous, while the microsphere obtained by spray drying had certain cohesiveness and small particle size. Besides, results also indicated that β-CD/CTS could modify properties and improve the thermal stability of GEO, which would improve its application value in food and medical industries.


2011 ◽  
Vol 672 ◽  
pp. 157-160
Author(s):  
Ionel Chicinaş ◽  
Viorel Pop ◽  
Florin Popa ◽  
Virgiliu Călin Prică ◽  
Traian Florin Marinca ◽  
...  

The formation of quaternary 76Ni17Fe5Cu2Cr (wt. %) alloy by mechanical alloying is investigated. The elemental powders of Ni, Fe, Cu and Cr where milled in argon atmosphere in a planetary ball mill for time up to 20 h. Formation of the alloy was checked by X-ray diffraction studies. It is found that the rapid formation of the alloy lead to the rapid establishment of an equilibrium between the welding and fracture process during milling, leading to a constant particle size distribution over a big range of milling time. The morphology of the powders, studied by scanning electron microscopy (SEM) confirms the rapid increase in size. The particle size distribution and the flowability of the powders are also analyzed as a function of milling time. Enhanced magnetization was found for the milled samples, compared to a cast alloy.


Sign in / Sign up

Export Citation Format

Share Document