scholarly journals An Experimental Investigation and Aspen HYSYS Simulation of Waste Polystyrene Catalytic Cracking Process for the Gasoline Fuel Production

2021 ◽  
Vol 10 (4) ◽  
pp. 891-900
Author(s):  
Selvaganapathy Thambiyapillai ◽  
Muthuvelayudham Ramanujam

Plastic wastes are necessary to recycle due to their disposal issues around the world. They can be recycled through various techniques i.e., mechanical reprocessing, mechanical recycling, chemical recycling and incineration. Most recycling techniques are expensive and end up in producing low-grade products excluding chemical recycling; it is an eco-friendly way to deal with plastic waste. Catalytic cracking is one of the chemical recycling methods, for converting waste plastics into liquid fuel same as commercial fuels. An experimental investigation of polystyrene catalytic cracking process was conducted with impregnated fly ash catalyst and 88.4% of liquid product yield was found as a maximum at optimum operating conditions 425 ̊C and 60 min. The liquid fuel quality was analyzed using FTIR spectra analysis, GC/MS analysis and Physico-chemical property analysis. The GC/MS analysis shows that the fly ash cracking of polystyrene leads to the production of gasoline fuels within the hydrocarbon range of C3-C24, and the aliphatic and aromatic functional compounds were detected using FTIR analysis. Moreover, the Aspen Hysys simulation of polystyrene catalytic cracking was conducted in a pyrolytic reactor at 425 ̊C and at the end of the simulation, 93.6% of liquid fuel yield was predicted. It was inferred that the simulation model for the catalytic cracking is substantial to fit the experimental data in terms of liquid fuel conversion

Author(s):  
Michael Brandt ◽  
Kay O. Gugel ◽  
Christoph Hassa

Liquid fuel evaporation was investigated in a premix duct, operating at conditions expected for lean premixed and prevaporized combustion. Results from a flat prefilming airblast atomizer are presented. Kerosine Jet A was used in all experiments. Air pressure, air temperature and liquid fuel flow rate were varied separately, their relative influences on atomization, evaporation and fuel dispersion are discussed. The results show, that at pressures up to 15 bars and temperatures up to 850 K, nearly complete evaporation of the fuel was achieved, without autoignition of the fuel. For the configuration tested, the fuel distributions of the liquid and evaporated fuel sbow very little differences in their dispersion characteristics and were not much affected by a variation of the operating conditions.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 186 ◽  
Author(s):  
Guoxia Wei ◽  
Hanqiao Liu ◽  
Fang Liu ◽  
Tongtong Zeng ◽  
Guisheng Liu ◽  
...  

The objective of the research was to compare the flotation performance of medical waste incinerator fly ash (MWIFA) by considering two methods: the cyclonic-static micro-bubble flotation column (FCSMC) method and conventional flotation cell (CFC) method. The results indicated that for FSCMC, the optimum parameters were kerosene = 3.5 g/kg·ash, methyl isobutyl carbinol (MIBC) = 0.2 g/kg·ash, Tween 80 = 7.5% of kerosene concentration, slurry concentration = 100 g/L, and pump speed = 380 r/min. The optimized conditions resulted in a higher dioxin removal efficiency (90.98%), carbon removal efficiency (91.88%) and lower loss on ignition (LOI) (4.96%). The data obtained from the CFC under different optimum operating conditions were 88.65%, 90.63% and 5.68%, respectively. FSCMC was proven to be more efficient for the flotation of MWIFA than CFC.


2020 ◽  
Vol 16 (2) ◽  
pp. 196-200
Author(s):  
Nurullafina Saadah ◽  
Susianto Susianto ◽  
Ali Altway ◽  
Yeni Rachmawati

Natural Buton Asphalt (Asbuton) is a naturally occurring asphalt that is contained in rock deposit located in Buton Island, Indonesia. Asbuton is mostly used as a mixture of bitumen since it has the potential to be cracked into hydrocarbon and produced as a liquid fuel for energy consumption. The present study aims to investigate the effect of pyrolysis temperature and the mass ratio of the Asbuton with catalyst on the Asbuton conversion. The pyrolysis process is carried out on a batch using vacuum reactor with various temperatures and mass ratios of catalyst to Asbuton. The gas coming out of the process is passed through the condenser, where the condensed gas (liquid product) is collected in the flask, whereas the uncondensed gas (gas product) is collected in a gas holder and the yield is analyzed upon the pyrolysis process completion. The respond parameter of the catalytic pyrolysis are oil flammability, yield, and oil density. The synthesized ZSM-5 catalyst is more effective for the Asbuton bitumen cracking process as opposed to the Natural Zeolite. Furthermore, it is investigated that the most optimum operating condition throughout this experiment was 70.07% and obtained at 350 °C with 9% ZSM-5 catalyst. In terms of product characterization, the liquid product can be ignited during the flame test. From the S.G. and API gravity values, it is suggested that the products belong to crude oil range, and thus, confirming that Asbuton has great potentials to be developed into alternative fuel.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 206 ◽  
Author(s):  
Muhammad Haris Hamayun ◽  
Ibrahim M. Maafa ◽  
Murid Hussain ◽  
Rabya Aslam

In the recent era, hydrogen has gained immense consideration as a clean-energy carrier. Its storage is, however, still the main hurdle in the implementation of a hydrogen-based clean economy. Liquid organic hydrogen carriers (LOHCs) are a potential option for hydrogen storage in ambient conditions, and can contribute to the clean-fuel concept in the future. In the present work, a parametric and simulation study was carried out for the storage and release of hydrogen for the methylcyclohexane toluene system. In particular, the methylcyclohexane dehydrogenation reaction is investigated over six potential catalysts for the temperature range of 300–450 °C and a pressure range of 1–3 bar to select the best catalyst under optimum operating conditions. Moreover, the effects of hydrogen addition in the feed mixture, and byproduct yield, are also studied as functions of operating conditions. The best catalyst selected for the process is 1 wt. % Pt/γ-Al2O3. The optimum operating conditions selected for the dehydrogenation process are 360 °C and 1.8 bar. Hydrogen addition in the feed reduces the percentage of methylcyclohexane conversion but is required to enhance the catalyst’s stability. Aspen HYSYS v. 9.0 (AspenTech, Lahore, Pakistan) has been used to carry out the simulation study.


2021 ◽  
Vol 13 (11) ◽  
pp. 6490
Author(s):  
Farea Asif ◽  
Muhammad Haris Hamayun ◽  
Murid Hussain ◽  
Arif Hussain ◽  
Ibrahim M. Maafa ◽  
...  

The depletion of conventional energy resources has drawn the world’s attention towards the use of alternate energy resources, which are not only efficient but sustainable as well. For this purpose, hydrogen is considered the fuel of the future. Liquid organic hydrogen carriers (LOHCs) have proved themselves as a potential option for the release and storage of hydrogen. The present study is aimed to analyze the performance of the perhydro-dibenzyl-toluene (PDBT) dehydrogenation system, for the release of hydrogen, under various operational conditions, i.e., temperature range of 270–320 °C, pressure range of 1–3 bar, and various platinum/palladium-based catalysts. For the operational system, the optimum operating conditions selected are 320 °C and 2 bar, and 2 wt. % Pt/Al2O3 as a suitable catalyst. The configuration is analyzed based on exergy analysis i.e., % exergy efficiency, and exergy destruction rate (kW), and two optimization strategies are developed using principles of process integration. Based on exergy analysis, strategy # 2, where the product’s heat is utilized to preheat the feed, and utilities consumption is minimized, is selected as the most suitable option for the dehydrogenation system. The process is simulated and optimized using Aspen HYSYS® V10.


2020 ◽  
pp. 0734242X2093674
Author(s):  
Amer Inayat ◽  
Katerina Klemencova ◽  
Barbora Grycova ◽  
Barbora Sokolova ◽  
Pavel Lestinsky

Thermo-catalytic pyrolysis is considered as a promising process for the chemical recycling of waste polymeric materials aiming at converting them into their original monomers or other valuable chemicals. In this regard, process parameters and reactor type can play important roles for an enhanced recovery of the desired products. Polystyrene (PS) wastes are excellent feedstocks for the chemical recycling owing to the capability of PS to be fully recycled. In this respect, the present work deals with the thermo-catalytic pyrolysis of PS in batch and semi-batch reactor setups. The main goal was to perform a comprehensive study on the depolymerisation of PS, thereby investigating the effect of reactor type, catalyst arrangement, feed to catalyst ratio and residence time on the yields of oil and styrene monomer (SM). A further goal was to identify the optimum operating conditions as well as reactor type for an enhanced recovery of oil and SM. It was demonstrated that the semi-batch reactor outperformed the batch reactor in terms of oil and SM yields in both thermal (non-catalytic) and catalytic tests performed at 400°C. Furthermore, it was shown that the layered arrangement of catalyst (catalyst separated from PS) produced a higher amount of oil with higher selectivity for SM as compared to the mixed arrangement (catalyst mixed with PS). Moreover, the effect of carrier gas flowrate on the product distribution was presented.


1997 ◽  
Vol 119 (4) ◽  
pp. 815-821 ◽  
Author(s):  
M. Brandt ◽  
K. O. Gugel ◽  
C. Hassa

Liquid fuel evaporation was investigated in a premix duct, operating at conditions expected for lean premixed and prevaporized combustion. Results from a flat prefilming airblast atomizer are presented. Kerosine Jet A was used in all experiments. Air pressure, air temperature, and liquid fuel flow rate were varied separately; their relative influences on atomization, evaporation, and fuel dispersion are discussed. The results show that at pressures up to 15 bars and temperatures up to 850 K, nearly complete evaporation of the fuel was achieved, without autoignition of the fuel. For the configuration tested, the fuel distributions of the liquid and evaporated fuel show very little difference in their dispersion characteristics and were not much affected by a variation of the operating conditions.


2017 ◽  
Vol 6 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Rondang Tambun ◽  
Oktris Novali Gusti ◽  
Muhammad Anshori Nasution ◽  
Rangga Pramana Saptawaldi

The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.


2019 ◽  
Vol 1282 ◽  
pp. 012081
Author(s):  
Selpiana ◽  
Budi Santoso ◽  
Debi Putri Suprapto ◽  
Ridho Patratama ◽  
Dede Pramayuda

Sign in / Sign up

Export Citation Format

Share Document