scholarly journals BIOFUEL PRODUCTION FROM PALM OLEIN BY CATALYTIC CRACKING PROCESS USING ZSM-5 CATALYST

2017 ◽  
Vol 6 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Rondang Tambun ◽  
Oktris Novali Gusti ◽  
Muhammad Anshori Nasution ◽  
Rangga Pramana Saptawaldi

The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.

2021 ◽  
Vol 17 (6) ◽  
Author(s):  
Silvio Alex Pereira Mota ◽  
Andréia Andrade Mancio ◽  
Jhuliana Silva Santanna ◽  
Valtiane de Jesus Pantoja Gama ◽  
Nélio Teixeira Machado

The present paper investigated the influence of the reaction time on the quality (physical-chemical properties) of biofuels obtained by catalytic cracking of crude palm oil (CPO). The influence of the reaction time (10, 20, 30, 40, 50, and 60 min) on the quality of crude biofuels denominated organic liquid products (OLP) was investigated through experiments carried out in a cracking pilot plant with capacity of 143 L in the following operating conditions: 20 wt% sodium carbonate (Na2CO3) as catalyst, 450 °C, 1 atm and batch mode operation. The quality of the biofuels produced was certified through physical-chemical analyzes (acid value, saponification value, specific gravity, refractive index, kinematic viscosity, corrosiveness to copper, and flash point). The results show that the physical-chemical properties of OLP decrease as the reaction time increases, in such a way that, catalytic cracking process occurs efficiently in the interval of 10 to 20 min after its start, which can be finalized when it reaches 30 minutes of reaction. In addition, Na2CO3 was essential as a catalyst in the cracking reaction to reduce the physical-chemical properties of OLPs obtained at different times, allowing the specific gravity, kinematic viscosity and corrosivity to copper to be within or very close to the limits established for Diesel S10.


2020 ◽  
Vol 9 (1) ◽  
pp. 107-112 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
Roni Ade Saputra ◽  
...  

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved


FLUIDA ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 50-56
Author(s):  
Paqih Purnama Alam ◽  
I Wayah Adithama Nugraha ◽  
Mukhtar Ghozali ◽  
Dian Ratna Suminar

The average consumption rate of cooking oil in Indonesia on 2019 was 61 million litre. Because of that makes the waste cooking oil produces very high to. To prevent the consument littering the waste cooking oil, we can recycle it to be biofuel with many fraction such as biodiesel, biogasoline, and biokerosene. There are many ways to process the waste cooking oil to be, biofuel one of them is catalytic cracking. This study is induct by observe the biofuel that form from the catalytic cracking process with cooking oil as the base material using a hybrid catalyst ZSM-5/Alumina. The purpose of this study is to observe the influence of ZSM-5 and Alumina ratio as heterogenic catalyst and also the used of the catalyst frequently. The highest conversion of liquid product was produce with value 41,67%  at alumina variation of 17,5%. The used of catalyst frequently will affect the decrease amount of liquid product that produce. The analysis of chemical properties using GC-MS obtained the amount of kerosene 29,917 %; gasoline 3,996 %; and diesel 10,1 %. The other product was carboxylics acids,alcohol, and unidentified compound.   Keyword : Cooking oil, biofuel, ZSM-5, Alumina, catalytic cracking


REAKTOR ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 75-80
Author(s):  
Dieni Mansur ◽  
Aminuddin Aminuddin ◽  
Verina J Wargadalam

Catalytic cracking of vegetable oil for the production of bio-hydrocarbons had been developed. In this study, the catalytic cracking of Refined-Bleach-Deodorized Palm Oil (RBDPO) had carried out over Fluid Catalytic Cracking Unit (FCCU) equilibrium catalyst in a micro activity test reactor at 510°C under various catalyst to oil (CTO) ratio of 1.20 - 2.01 g/g. The catalytic cracking of RBDPO had produced the organic liquid product (OLP) containing bio-hydrocarbon, water, gas, and coke on the catalyst converted to CO2 during the catalyst regeneration process. The increase in CTO ratio from 1.20 to 2.01, OLP yield decreased from 80.48% to 70.12%. The OLP was separated into gasoline, light cycle oil (LCO), and heavy cycle oil (HCO) based on boiling point difference by a simulated distillation gas chromatography (SimDis GC). High gasoline fraction as 31.56% was produced at CTO of 2.01 g/g. The gasoline fraction contained olefins, aromatics, paraffin, iso-paraffins, and a small amount of naphthenes and oxygenates. The presence of chemicals in the gasoline fraction influenced the research octane number (RON) of the fuel.Keyword: bio-hydrocarbon; catalytic cracking; micro activity test reactor; RBDPO


2021 ◽  
Vol 10 (4) ◽  
pp. 891-900
Author(s):  
Selvaganapathy Thambiyapillai ◽  
Muthuvelayudham Ramanujam

Plastic wastes are necessary to recycle due to their disposal issues around the world. They can be recycled through various techniques i.e., mechanical reprocessing, mechanical recycling, chemical recycling and incineration. Most recycling techniques are expensive and end up in producing low-grade products excluding chemical recycling; it is an eco-friendly way to deal with plastic waste. Catalytic cracking is one of the chemical recycling methods, for converting waste plastics into liquid fuel same as commercial fuels. An experimental investigation of polystyrene catalytic cracking process was conducted with impregnated fly ash catalyst and 88.4% of liquid product yield was found as a maximum at optimum operating conditions 425 ̊C and 60 min. The liquid fuel quality was analyzed using FTIR spectra analysis, GC/MS analysis and Physico-chemical property analysis. The GC/MS analysis shows that the fly ash cracking of polystyrene leads to the production of gasoline fuels within the hydrocarbon range of C3-C24, and the aliphatic and aromatic functional compounds were detected using FTIR analysis. Moreover, the Aspen Hysys simulation of polystyrene catalytic cracking was conducted in a pyrolytic reactor at 425 ̊C and at the end of the simulation, 93.6% of liquid fuel yield was predicted. It was inferred that the simulation model for the catalytic cracking is substantial to fit the experimental data in terms of liquid fuel conversion


2015 ◽  
Vol 4 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Sri Kadarwati ◽  
Sri Wahyuni

Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni) at various reaction temperatures (400-500oC) in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO3)2.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol) and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion


2017 ◽  
Vol 757 ◽  
pp. 166-170
Author(s):  
Kodchakon Kun-Asa ◽  
Lalita Attanatho ◽  
Prasert Reubroycharoen

Palm oil is considered as a potential feedstock for biofuel production in Thailand due to its property and availability. In recent years, there has been an increased attention on upgrading of palm oil to biofuels using various technologies. One of the most promising technologies is pyrolysis, in which palm oil is heated at the temperature in the range of 400 to 500 °C under oxygen-free atmosphere. In the present study, the uncoated catalyst and coated catalyst pyrolysis processes of palm oil for biofuel production in a continuous flow microchannel reactor were investigated with various catalyst types (MgO, Al2O3) at 400-500 °C, 2 ml/hr palm oil flow rate, and 0.1 g of catalysts. Liquid product yield, solid product yield and gaseous product yield were determined. The obtained results revealed that the high triglyceride conversion could be achieved at a short reaction time in microchannel reactor, which attributed to the enhancement of both heat and mass transfer. The pyrolysis liquid products composed of hydrocarbons, free fatty acids, and other oxygenated compounds which are the results of triglyceride cracking. Furthermore, product selectivity of palm oil pyrolysis depended on temperature and catalyst type.


1970 ◽  
Vol 2 (1) ◽  
Author(s):  
F. A. A. Twaiq and S. Bhatia ◽  
N. A. M. Zabidi

The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY) zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE) with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM) were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.


2018 ◽  
Vol 67 ◽  
pp. 02023
Author(s):  
Michelle Flavin Carli ◽  
Bambang Heru Susanto ◽  
Thareq Kemal Habibie

Currently, fossil fuels are still the primary source of fuel. As has been known, fossil fuel especially aviation fuel is limited resources and can increase greenhouse gas emissions. This condition encourages replacement efforts of avture into bioavture fuel. In this research, bioavture is synthesized through hydrodeoxygenation and catalytic cracking from oleic acid as a model compound using NiMo/Zeolite catalyst. Hydrodeoxygenation carried out under operating conditions: at temperature of 375°C, under 15 bar pressure and for 2.5 hours. The chain of hydrocarbons from the result of hydrodeoxygenation has been cracked by catalytic cracking reaction for 1.5 hours. Variation operating condition used are 360, 375, and 390°C. The liquid product is tested its chemical characteristic, ie acid number, FTIR and GC-MS and its physical characteristics, ie density test and viscosity. Bioavtur that synthesized by catalytic cracking have met the specifications of bioavtur, except the acid number with optimum temperature at 375oC. These conditions with NiMo/Zeolite activated led to dominant yield of 36.32%, selectivity of 38.05%, and conversion of 84.30%. Percentage of yield and selectivity of bioavtur are still low caused by performance of catalyst that is still can not optimum. While, high percentage of conversion caused by high temperature used for catalytic cracking.


Sign in / Sign up

Export Citation Format

Share Document