scholarly journals Synthesis of Zeolite from Sugar Cane as Detergent Builder: Variation of Si/Al Ratio and Hydrothermal TimeSynthesis of Zeolite from Sugar Cane as Detergent Builder: Variation of Si/Al Ratio and Hydrothermal Time

2018 ◽  
Vol 21 (1) ◽  
pp. 24-28
Author(s):  
Arnelli Arnelli ◽  
Noor Afifah ◽  
Narita Rizki ◽  
Tri Windarti ◽  
Yayuk Astuti

Synthesis of zeolite from bagasse with variation of Si / Al ratio (1,2,1,4,1,6 and 1,8) with ZS1-ZS5 code and hydrothermal time (160, 190, 250, 340, and 460 minutes) with sample code ZSa - ZSe has been conducted. The synthesized zeolite was then applied to the detergent builder. The detergent builder of synthetic zeolite was used as a substitute for sodium tripolyphosphate, which is not environmentally friendly as it can lead to eutrophication. One of the detergent builder functions is to improve the washing efficiency of the surfactant by inactivating water-absorbing minerals (Ca2+ and Mg2+ ions) which may further deter the detergency process. Zeolites were synthesized using a sol-gel method followed by a hydrothermal process. The material used in this synthesis is Na2SiO3 (aq) (derived from bagasse) mixed with NaAl(OH)4 (aq), then stirred to form a white gel and continued by heating using autoclave at 100°C. The results obtained are zeolite-A and zeolt-X for variation of Si/Al ratio and hydrothermal time variation, with CEC value and detergency proportional to Si/Al ratio and hydrothermal time.

2017 ◽  
Vol 3 (1) ◽  
pp. 11-19
Author(s):  
Sri Sugiarti ◽  
Charlena Charlena ◽  
Nurul Afiati Aflakhah

The more commonly used method for making synthetic zeolite from kaolin is hydrothermal method. This research tested a sol-gel method in processing synthetic zeolit  using kaolin as the basic ingrediant. The synthetic  zeolite  derived from the sol-gel method was then characterized using X-ray Difractometer and Scanning Electron Microscope, which found resulting products zeolite-A, zeolite Y and sodalite. The adsorption ability of the synthetic zeolites was tested using Cu(II) and methylene blue.  Functionalization of the synthetic zeolites by 3-(trimetoksisilil)-1-propantiol was  done to increase adsorption capacity. Zeolite A modified by 3-(trimetoksisilil)-1-propantiol  had the greater capacity to adsorb methylene blue at 30.11 mg/g. The adsorption isotherms of all the synthetic zeolites approached the Langmuir form. The adsorption energy off all synthetic zeolites approached the chemical adsorption.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5144


Chemosphere ◽  
1996 ◽  
Vol 32 (9) ◽  
pp. 1741-1754 ◽  
Author(s):  
M. Monti ◽  
C. Welker ◽  
S.Fonda Umani
Keyword(s):  

2007 ◽  
Vol 124-126 ◽  
pp. 1165-1168 ◽  
Author(s):  
M. Qamar ◽  
Cho Rong Yoon ◽  
Hyo Jin Oh ◽  
Anna Czoska ◽  
K. Park ◽  
...  

The TiO2 sol was prepared hydrothermally in an autoclave from aqueous TiOCl2 solutions as starting precursor. Hollow fibers were obtained when sol-gel derived TiO2 sol was treated chemically with NaOH solution and subsequently heated in autoclave under various conditions. A systematic analysis of the influence of different NaOH concentrations on the formation of nanotubes has been carried out using XRD and SEM. The phase structure of the synthesized material was determined by transmission electron microscopy and found that these materials are, infact, hollow fibers widely known as nanotubes. From the TEM images, the outer and inner diameters of the tubes were measured ca. 8 and about 4 nm, respectively, with several hundred nanometers in length.


2018 ◽  
Vol 16 (2) ◽  
pp. 138 ◽  
Author(s):  
Yulius Dala Ngapa ◽  
Sri Sugiarti ◽  
Zaenal Abidin

A synthetic zeolite was produced from natural zeolite from Ende-Nusa Tenggara Timur (NTT) by hydrothermal method. This study aims to produce synthetic zeolite from Ende natural zeolite to remove cation dye through the adsorption process. Temperature of crystal formation (ageing) was performed at 60 °C for 6 h and hydrothermal process was at 100 °C for 24 h. The natural zeolite produced synthetic NaP1 and synthetic Faujasite. Based on the research results, the synthesis of zeolite by the hydrothermal method can enhance the adsorption capacity and Cation Exchange Capacity (CEC). The adsorption capacity in the natural zeolites of type ZG, ZL and ZC before the hydrothermal process were 17.289, 17.276, and 16.483 mg/g, respectively, and after hydrothermal they increased to 37.398, 37.369 and 37.362 mg/g, respectively. In addition, the CEC increased from 84.154, 81.042, and 77.474 cmol/kg, respectively, to 244.063, 216.354, and 211.432 cmol/kg, respectively. The Langmuir model most closely matched the isothermal adsorption equilibrium process.


2021 ◽  
pp. 2150116
Author(s):  
WUTTICHAI SINORNATE ◽  
HIDENORI MIMURA ◽  
WISANU PECHARAPA

In this work, morphological and physical properties of pyramid-like ZnO nanostructures fabricated on Sb-doped ZnO seeding films annealed under different atmospheres are extensively studied. The Sb-doped ZnO seeding films were first prepared by sol–gel spin coating technique onto glass substrate then annealed in nitrogen, air and argon followed by low-temperature hydrothermal process for ZnO nanostructures fabrication. The morphological results exhibit the growth of pyramid-like ZnO nanostructure with increasing density of the ZnO nanostructures. The crystal structure shows pyramid-like ZnO wurtzite hexagonal growth along the c-axis without any impurity phase. The growth of pyramid-like ZnO nanostructures is due to the high growth rate of (002) plane. Photoluminescence spectra exhibit the near-band-edge of all samples while the red emission appears in ZnO nanostructures after the hydrothermal process due to the imperfection in the crystal. The reflectance of ZnO nanostructures covers the visible region with the absorption edge of 375[Formula: see text]nm. The calculation shows the relevant energy band gaps in the range of 3.26–3.28[Formula: see text]eV. The difference in hydrothermally grown ZnO nanostructures is significantly affected by different annealing atmospheres.


2013 ◽  
Vol 575-576 ◽  
pp. 45-49
Author(s):  
Ai Qing Wu ◽  
Xin Zuo Fang ◽  
Xin Hua Lin ◽  
Huan Qin Wang ◽  
Ying Xian Wang ◽  
...  

Rutile Ti1xSnxO2(0.2x<1) solid solutions had been prepared using a sol-hydrothermal method, which combined the conventional sol-gel process with hydrothermal method. Hybrid alkoxides of Ti4+and Sn4+were used as precursors in the sol-gel process and Sn4+served as crystal-inducing agent during the formation of rutile crystal lattice in the hydrothermal process at 200°C. The microstructures and morphologies of nanoparticles were detected with XRD and TEM. Rutile Ti1xSnxO2solid solutions nanoparticles with well-distributed crystallite sizes about 10nm were obtained with Sn4+content above 20mol% without any high temperature calcination. The oxygen sensitivity properties of Ti1xSnxO2solid solutions had also been investigated. It is proved Ti1xSnxO2solid solutions exhibited higher oxygen responses than single TiO2or SnO2. A typical sample of Ti0.5Sn0.5O2presented the best sensitivity is approximately 6 under 400°C.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 805
Author(s):  
Jun Shi ◽  
Jing Wang ◽  
Huifen He ◽  
Yang Lu ◽  
Zhongxiang Shi

A facile approach is proposed herein to fabricate YMn2O5 powders with the hydrothermal method with oxygen as an oxidant. The structure and morphology of the as-synthesized YMn2O5 powders were characterized by XRD, SEM, and high-resolution transmission electron microscopy (HRTEM). The results manifested that the main factors that affected the formation of the rod-like YMn2O5 structures were the stirring time, hydrothermal temperature, and hydrothermal time. The oxidation time in the air had a remarkable effect on the final product by oxidizing Mn2+ ions to Mn3+ ions and Mn4+ ions. The obtained YMn2O5 powder was single crystalline and possessed a nanorod morphology, where the growth direction was along the c axis. The possible formation mechanism involved a dissolution–crystallization mechanism. Under the 397 nm excitation, the Mn4+ ions exhibited an intense orange emission at 596 nm. The energy bandgap of YMn2O5 powders was 1.18 eV.


Sign in / Sign up

Export Citation Format

Share Document