scholarly journals Cassava Skin Usage (Manihot esculenta L.) as Photocatalyst for Degradation of Methylene Blue in the River of Textile Industrial Zone

2018 ◽  
Vol 21 (4) ◽  
pp. 232-236
Author(s):  
Kharisma Madda Ellyana ◽  
Kharisma Luthfiaratri Rahayu ◽  
Ratri Febriastuti ◽  
Abdul Haris

The progress of the textile industry can increase the amount of dyestuff waste, but often waste disposal is overlooked. The purpose of this research is to provide solution in handling river water pollution by textile industry dye waste. The degradation of textile industry dye waste can be done with TiO2 semiconductors with UV light as a source of irradiation, but only 5% of sunlight can be utilized TiO2 to excite its electrons, so degradation process is not effective. It needs a material that can optimize the activity of TiO2 semiconductor, one of them C-dot coming from cassava skin. The results obtained in this research were TiO2/C-dot composite which could degrade methylene blue where its effectiveness was tested using UV-Vis spectrophotometer instrument. TiO2/C-dot photocatalyst activity test for methylene blue 0.0001 M showed that the concentration of 20% with the amount of degradation up to 96,99%, best type of rays was sunshine with amount of degradation up to 66,25% and longest radiation in sunshine with the amount of degradation was up to 78.77% and UV with the amount of degradation up to 75.99%.

2020 ◽  
Vol 1008 ◽  
pp. 97-103
Author(s):  
Mahmoud Samy ◽  
Mona G. Ibrahim ◽  
Mohamed Gar Alalm ◽  
Manabu Fujii

Methylene blue (MB) is one of the commonly used dyes in the textile industry and can be used as a model pollutant for the textile industry wastewater. In this work, the photocatalytic degradation of MB by synthesized nanoparticles of lanthanum vanadate (LaVO4) was assessed. The effects of pH, initial MB concentration and catalyst dose on the removal performance of MB were investigated and measuring the optimum values of these operational conditions was performed using response surface methodology (RSM). Catalyst dose of 0.43 g/L, initial MB concentration of 5.0 mg/L, and pH of 6.86 were found to be the optimum conditions in reaction time of 60 min. A mathematical model was formed to relate the removal efficiency of MB to the aforementioned operating parameters. The removal efficiency of MB was 91% without any scavengers at a catalyst dose of 0.3 g/L, pH of 7 and initial MB concentration of 10 mg/L. The trapping experiments confirmed the participation of different reactive species in the photo-degradation process. The degradation rates of MB were 91%, 86%, 81%, 77.70% and 72% in five successive runs using LaVO4.


Author(s):  
Ashfeen Nawar ◽  
◽  
Md. Ataur Rahman ◽  
Md. Mufazzal Hossain

Industrialization in the current times has become extremely rapid. Some of these industries are responsible for discharging dye-containing wastewater into natural water bodies and hence causing environmental deterioration. The purpose of this research is to investigate an inexpensive and easy-to-set-up photodegradation process for the mineralization of methylene blue (MB) dye. The optimum conditions required for maximum degradation of the dye were explored by varying different experimental parameters such as the initial concentration of Fe(III) and dye, pH of the reaction mixture, nature of light sources, and intensity of ultraviolet (UV) light. Approximately 97% photodegradation of methylene blue was recorded at pH 2.30 for the optimum concentration of MB of 3.00 × 10−5 M and Fe(III) aqueous solution of 8.00 × 10−4 M when irradiated under UV light of intensity 3.31 × 10−9 Ein cm−3 s−1. Under sunlight, with similar experimental conditions, 73% degradation of the dye was achieved. This is an environment-friendly, efficient, and low-cost degradation process of methylene blue.


2021 ◽  
Vol 4 (2) ◽  
pp. 75
Author(s):  
Indri Susanti ◽  
Rendy Muhamad Iqbal ◽  
Rahadian Abdul Rachman ◽  
Tri Agusta Pradana

<p class="E-JOURNALAbstractBodyEnglish">Methylene blue is the most widely used dye in the industry and it is difficult to be degraded by the microorganism. This research aims to investigate the photocatalytic activity and effects of contact time on the photocatalytic degradation rate of methylene blue by TiO<sub>2</sub>/Zeolite-NaY and TiO<sub>2</sub>-N/Zeolite-NaY material based on the kinetic study. The Advanced Oxidative Process (AOP) method was used to degrade methylene blue. Furthermore, the AOP is a degradation process that uses semiconductor material such as TiO<sub>2</sub> or modification catalyst of TiO<sub>2 </sub>to be TiO<sub>2</sub>/Zeolite-NaY and TiO<sub>2</sub>-N/Zeolite-NaY. The degradation of methylene blue with catalyst TiO<sub>2</sub>/Zeolite-NaY and TiO<sub>2</sub>-N/Zeolite-NaY were tested under UV light for 5, 20, 30, 40, and 50 minutes. The result showed that TiO<sub>2</sub>/Zeolite-NaY and TiO<sub>2</sub>-N/Zeolite-NaY had an excellent activity for degrading the dye, which reached up to 99% after 20 and 30 minutes reaction, respectively. Also, a kinetic study of methylene blue degradation on TiO<sub>2</sub>/Zeolite-NaY and TiO<sub>2</sub>-N/Zeolite-NaY showed the kinetic models were according to pseudo-second-order.</p>


2021 ◽  
Vol 10 (2) ◽  
pp. 132-139
Author(s):  
Rendy Muhamad Iqbal ◽  
◽  
Indri Susanti ◽  
Rahadian Abdul Rachman ◽  
Tri Agusta Pradana ◽  
...  

Dye is an important compound in textile industry. The famous dye for coloring of textile is methylene blue. Methylene blue degradation has been difficult when carried out naturally by microorganisms. The advanced oxidative process is a promising method to degrade methylene blue using semiconductor material TiO2 and its modification. The modification catalyst of TiO2 such as TiO2-N, TiO2/zeolite-NaY and TiO2-N/zeolite-NaY. These materials were synthesized by mixing TiO2 and urea, then followed by impregnation of the mixture to zeolite-NaY as support material. The materials have been synthesized then characterized by XRD, and FTIR. Degradation of methylene blue on the synthesized materials was tested under UV light for 5, 20, 30, 40, and 50 minutes. The results showed that the diffractogram of TiO-N/zeolite-NaY and TiO2/zeolite-Y has a similar spesific peak with TiO2 and zeolite-NaY. It indicates that the impregnation process was sucessfully. TiO2/zeolite-NaY and TiO2-N/zeolite-NaY also showed the excellent activity for degrading methylene blue, which reached up to 99% for 3 hours of reaction.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Michelle ◽  
Rachel Arvy Nabasa Siregar ◽  
Astia Sanjaya ◽  
Jap Lucy ◽  
Reinhard Pinontoan

Abstract. Michelle, Siregar RAN, Sanjaya A, Jap L, Pinontoan R. 2020. Methylene blue decolorizing bacteria isolated from water sewage in Yogyakarta, Indonesia. Biodiversitas 21: 1136-1141. The textile industry contributes to water pollution issues all over the world. One of the most commonly applied cationic dye in the textile industry is methylene blue. This study aimed to isolate bacteria with the potential to decolorize methylene blue from dye contaminated sewage water located in Kulon Progo District, Yogyakarta, where several textile industries within the proximity, are located. Characterizations of bacterial candidates were done morphologically and biochemically. Molecular identification was conducted by 16S rRNA sequencing. The ability of isolates to decolorize methylene blue was observed by the reduction of methylene blue’s maximum absorption at the wavelength of 665 nm. The results showed that isolates were identified as Comamonas aquatica and Ralstonia mannitolilytica. C. aquatica PMB-1 and R. mannitolilytica PMB-2 isolates were able to decolorize methylene blue with decolorization percentage of 67.9% and 60.3%, respectively when incubated for 96 hours at 37°C. These findings present information on the capability of the genus Ralstonia and Comamonas to decolorize methylene blue cationic dye.


2019 ◽  
Vol 25 (34) ◽  
pp. 3645-3663 ◽  
Author(s):  
Muhammad Ismail ◽  
Kalsoom Akhtar ◽  
M.I. Khan ◽  
Tahseen Kamal ◽  
Murad A. Khan ◽  
...  

: Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can’t degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.


2021 ◽  
Vol 78 (5) ◽  
pp. 2849-2865
Author(s):  
Bircan Haspulat Taymaz ◽  
Recep Taş ◽  
Handan Kamış ◽  
Muzaffer Can

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Zahir Muhammad ◽  
Farman Ali ◽  
Muhammad Sajjad ◽  
Nisar Ali ◽  
Muhammad Bilal ◽  
...  

Degradation of organic dyes and their byproducts by heterogeneous photocatalysts is an essential process, as these dyes can be potentially discharged in wastewater and threaten aquatic and xerophyte life. Therefore, their complete mineralization into nontoxic components (water and salt) is necessary through the process of heterogeneous photocatalysis. In this study, Zr/CrO2 (Zirconium-doped chromium IV oxide) nanocomposite-based photocatalysts with different compositions (1, 3, 5, 7 & 9 wt.%) were prepared by an environmentally friendly, solid-state reaction at room temperature. The as-prepared samples were calcined under air at 450 °C in a furnace for a specific period of time. The synthesis of Zr/CrO2 photocatalysts was confirmed by various techniques, including XRD, SEM, EDX, FT-IR, UV-Vis, and BET. The photocatalytic properties of all samples were tested towards the degradation of methylene blue and methyl orange organic dyes under UV light. The results revealed a concentration-dependent photocatalytic activity of photocatalysts, which increased the amount of dopant (up to 5 wt.%). However, the degradation efficiency of the catalysts decreased upon further increasing the amount of dopant due to the recombination of holes and photoexcited electrons.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document