scholarly journals Investigation of the relationship between virulence factors and antibiotic resistance of Enterococci isolates

2019 ◽  
Vol 65 (2) ◽  
pp. 14 ◽  
Author(s):  
Umut Safiye Say Coskun
2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Sinem Oktem-Okullu ◽  
Zehra Cekic-Kipritci ◽  
Elif Kilic ◽  
Nogayhan Seymen ◽  
Nesteren Mansur-Ozen ◽  
...  

The aim of this study is to evaluate the association between seven important H. pylori virulence factors and antibiotic resistance in patients with gastritis. H. pylori strains isolated from 33 patients with gastritis were examined. Antimicrobial susceptibilities were tested by GenoType® HelicoDR (Hain Life Science, Germany) test kit and RT-PCR. The virulence-factors were determined using conventional PCR. 39% of patients were resistant for clarithromycin and 27% of patients were resistant for fluoroquinolone. 15% of patients were resistant to both clarithromycin and fluoroquinolone. The H. pylori vacA m1/s2 genotype was the most frequent allelic combination. Patients were possessed the vacA s1, m1 (6.1%); s1, m2 (6.1%); s2, m1 (15.1%); and s2, m2 (3.0%) genotypes. 94% of patients with gastritis were positive for H. pylori napA gene. Also, there were no dupA gene-positive gastritis patients. There was no significant correlation between the vacA, cagA, oipA, hpaA, babA, napA, dupA, ureA, ureB virulence genes, clarithromycin, and fluoroquinolone resistance. Herein, we report that the relationship between the H. pylori napA gene and gastritis. Although we found a correlation between H. pylori virulence factor and clinical outcome, there is a need for further studies to enlighten the relation between H. pylori virulence genes and antibiotic resistance.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 170
Author(s):  
Angela França ◽  
Vânia Gaio ◽  
Nathalie Lopes ◽  
Luís D. R. Melo

Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Suelen Scarpa de Mello ◽  
Daria Van Tyne ◽  
Andrei Nicoli Gebieluca Dabul ◽  
Michael S. Gilmore ◽  
Ilana L. B. C. Camargo

Specific lineages of the commensal bacterium Enterococcus faecium belonging to CC17, especially ST412, have been isolated from patients in several hospitals worldwide and harbor antibiotic resistance genes and virulence factors. Here, we report a high-quality draft genome sequence and highlight features of E. faecium VRE16, a representative of this ST.


2013 ◽  
Vol 4 (4) ◽  
pp. 267-271 ◽  
Author(s):  
Abdillah Imron Nasution

ABSTRACT Candida albicans is an opportunistic fungus causing various forms of candidiasis. However, under certain circumstances it is capable of becoming pathogenic. Pathogenicity of oral candidiasis is a complex process and there is no one factor that can be regarded as the direct cause. This review aims to explain the virulence factors of Candida albicans in oral candidiasis infection and its relation to homeostasis in the mouth. Virulence factors of Candida albicans which is closely related to the nature of pathogens include: adherence and coaggregation, interference of immune system, phenotype switching and several supporting factors such as antibiotic resistance and immunomodulating. How to cite this article Nasution AI. Virulence Factor and Pathogenicity of Candida albicans in Oral Candidiasis. World J Dent 2013;4(4):267-271.


2018 ◽  
Vol 12 (2) ◽  
pp. 845-854 ◽  
Author(s):  
Mohammed Al-Shamarti ◽  
Ahmed Hussein ◽  
Adil AL-Luhaiby

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5470 ◽  
Author(s):  
Elif Bozcal ◽  
Vahap Eldem ◽  
Sohret Aydemir ◽  
Mikael Skurnik

Background Extraintestinal pathogenic Escherichia coli (ExPEC) is an important bacterium and responsible for many bloodstream infections, including urinary tract infections and even fatal bacteremia. The aim of this research was to investigate whether ExPEC strains isolated from Turkish blood cultures have a relationship between 16S rRNA based phylogenetic clusters and antibiotic resistance profiles, virulence factors or clonal lineages. Methods Phenotypically identified ExPEC blood culture isolates (n = 104) were included in this study. The 16S rRNA partial sequence analysis was performed for genotypic identification of ExPEC isolates. Antibiotic susceptibility and Extended-Spectrum β-Lactamase testing of isolates were performed. Phylogenetic classification (A, B1, B2 and D), Multi Locus Sequence Typing analysis and virulence-associated genes were investigated. Results Based on 16S rRNA partial sequence analysis, 97 out of 104 (93.26%) ExPEC isolates were confirmed as E. coli. Ampicillin (74.22%) and cefuroxime axetil (65.97%) resistances had the highest frequencies among the ExPEC isolates. In terms of phylogenetic classification of ExPEC, D (38.14%, 37/97) was the most prevalent group after A (29.89%, 29/97), B2 (20.61%, 20/97), and B1 (11.34%, 11/97). The sequence types of the 20 ExPEC isolates belonging to the B2 phylogenetic group were analyzed by Multi Locus Sequence Typing. Ten isolates out of 20 (50.0%) were identified as ST131. The other STs were ST95 (n = 1), ST14 (n = 1), ST10 (n = 1), ST69 (n = 1), ST1722 (n = 2), ST141 (n = 1), ST88 (n = 1), ST80 (n = 1), and ST998 (n = 1). Of the ST131 strains, six (60%, 6/10) represented serogroup O25. The most common virulence factor genes were serum resistance factor gene, traT (55.7%) aerobactin siderophore receptor and yersiniabactin encoding genes iutA (45.3%) and fyuA (50.5%), respectively. In addition, PAI (41.2%), iroN (23.7%), hlyA (15.4%), kpsII (13.4%), ompT (13.4%), papG (12.4%), iss (9.3%), cnf1 (7.2%), ibeA (2.06%), and sfaS (2.06%) genes were present in the ExPEC isolates. Conclusion The 16S rRNA-based phylogenetic relationship tree analysis showed that a large cluster was present among 97 ExPEC isolates along with related reference strains. There were 21 main clusters with 32 closely related subclusters. Based on our findings, different clonal lineages of ExPEC can display different antibiotic susceptibilities and virulence properties. We also concluded that virulence factors were not distributed depending on phylogenetic groups (A, B1, B2, and D). The ExPEC isolates belonging to the same phylogenetic group and sequence type could display different resistance and virulence characteristics.


Sign in / Sign up

Export Citation Format

Share Document