scholarly journals Differential expression of selected Arabidopsis resistant genes under abiotic stress conditions

2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Gagan Kumar Panigrahi ◽  
Annapurna Sahoo ◽  
Kunja Bihari Satapathy

The plant immune system is equipped with several defensive layers to evade pathogen attack. One of the primary defense includes plasma membrane-localized receptors explicitly detect conserved pathogen-associated molecular patterns. Transcriptional reprogramming of resistant genes confers PAMP-triggered immunity. Consequently basal immunity is triggered which is primarily mediated by several intracellular nucleotide-binding leucine rich repeat receptors. Subsequently, nucleotide-binding leucine rich repeat receptors sense pathogens and activate another defense response known as effector triggered immunity. Both the PTI and ETI are mediated by resistant genes. Interestingly, the detailed molecular function of resistant genes is not yet fully revealed. Resistant genes are also well involved in non pathophysiological conditions such as during cold stress, heat stress, duration of exposure of light and drought stress. Here, we have reported that the Arabidopsis resistant genes AT1G17600, AT4G14368, AT4G16860, AT5G40910 and AT5G45050 are temperature regulated. We found that the transcript levels of AT1G58400, AT2G14080, AT2G17055, AT3G51560, AT4G16950, AT5G40910 and AT5G45050 were significantly raised for the plant samples grown under short-day conditions. The transcript levels of AT1G17600, AT1G27180, AT1G33560, AT2G14080, AT3G51560, AT4G16860 and AT4G16950 were upregulated for plants grown under drought stress conditions. In Arabidopsis, the transcriptional reprogramming is modulated by decapping protein factors. There was no significant change in the protein level of DCPs. Our results suggest that under abiotic stress conditions, the resistant genes differentially express independent of the decapping event.

2021 ◽  
Vol 22 (8) ◽  
pp. 3986
Author(s):  
Xue Wang ◽  
Qiumin Chen ◽  
Jingnan Huang ◽  
Xiangnan Meng ◽  
Na Cui ◽  
...  

Cucumber powdery mildew caused by Sphaerotheca fuliginea is a leaf disease that seriously affects cucumber’s yield and quality. This study aimed to report two nucleotide-binding site-leucine-rich repeats (NBS-LRR) genes CsRSF1 and CsRSF2, which participated in regulating the resistance of cucumber to S. fuliginea. The subcellular localization showed that the CsRSF1 protein was localized in the nucleus, cytoplasm, and cell membrane, while the CsRSF2 protein was localized in the cell membrane and cytoplasm. In addition, the transcript levels of CsRSF1 and CsRSF2 were different between resistant and susceptible cultivars after treatment with exogenous substances, such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), ethephon (ETH), gibberellin (GA) and hydrogen peroxide (H2O2). The expression analysis showed that the transcript levels of CsRSF1 and CsRSF2 were correlated with plant defense response against S. fuliginea. Moreover, the silencing of CsRSF1 and CsRSF2 impaired host resistance to S. fuliginea, but CsRSF1 and CsRSF2 overexpression improved resistance to S. fuliginea in cucumber. These results showed that CsRSF1 and CsRSF2 genes positively contributed to the resistance of cucumber to S. fuliginea. At the same time, CsRSF1 and CsRSF2 genes could also regulate the expression of defense-related genes. The findings of this study might help enhance the resistance of cucumber to S. fuliginea.


2021 ◽  
Vol 118 (47) ◽  
pp. e2116570118
Author(s):  
Derek Seto ◽  
Madiha Khan ◽  
D. Patrick Bastedo ◽  
Alexandre Martel ◽  
Trinh Vo ◽  
...  

Pathogenic effector proteins use a variety of enzymatic activities to manipulate host cellular proteins and favor the infection process. However, these perturbations can be sensed by nucleotide-binding leucine-rich-repeat (NLR) proteins to activate effector-triggered immunity (ETI). Here we have identified a small molecule (Zaractin) that mimics the immune eliciting activity of the Pseudomonas syringae type III secreted effector (T3SE) HopF1r and show that both HopF1r and Zaractin activate the same NLR-mediated immune pathway in Arabidopsis. Our results demonstrate that the ETI-inducing action of pathogenic effectors can be harnessed to identify synthetic activators of the eukaryotic immune system.


2021 ◽  
Vol 22 (20) ◽  
pp. 11017
Author(s):  
Adeel Abbas ◽  
Haiyan Yu ◽  
Xiangju Li ◽  
Hailan Cui ◽  
Jingchao Chen ◽  
...  

Aegilops tauschii (Coss.) is an aggressive and serious annual grass weed in China. Its DD genome is a rich source of genetic material and performs better under different abiotic stress conditions (salinity, drought, temperature, etc.). Reverse-transcribed quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for reference gene selection and validation. This work aimed to evaluate the stability of reference gene expression in Ae. tauschii under different abiotic stresses (salinity, drought, hot, and cold) and developmental stages (seedling and development). The results show that the ubiquitin-conjugating enzyme E2 36-like (UBC36) and protein microrchidia 2-like (HSP) are the most stable genes under control and salinity conditions, respectively. Under drought stress conditions, UBC36 is more stable as compared with others. Glyceraldehyde-3-phosphate dehydrogenase (GADPH) is the most stable reference gene during heat stress conditions and thioredoxin-like protein (YLS) under cold stress condition. Phosphate2A serine/threonine-protein phosphatase 2A (PP2A) and eukaryotic translation initiation factor 3 (ETIF3) are the most stable genes at seedling and developmental stages. Intracellular transport protein (CAC) is recommended as the most stable gene under different abiotic stresses and at developmental stages. Furthermore, the relative expression levels of NHX1 and DREB under different levels of salinity and drought stress conditions varied with the most (HSP and UBC36) and least (YLS and ACT) stable genes. This study provides reliable reference genes for understanding the tolerance mechanisms in Ae. tauschii under different abiotic stress conditions.


Author(s):  
Jenifer Lolita C

Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we were attempted to study characterization of bZIP, a transcription factor from a climate smart cereal finger millet (Eleusine coracana L.). Seeds of Eleusine coracana (finger millet) was purchase from local market and were grown under field conditions drought and salt stress conditions. In this study, EcbZIP gene was isolated from finger millet, cloned into DH5α cells, screened by using colony PCR and expression analysis in response to two abiotic stresses was carried out by using qRT PCR. EcbZIP coding DNA sequence and protein sequence were retrieved from NCBI Nucleotide Database and Genpept of Accession number KP033192.1 and AJP67539.1 and validated by using SMART (simple modular architecture tool) Domain Tool. Cloning and expression studies were carried out using standardized molecular biology protocol. Results depicted that EcbZIP transcription factor showed significant upregulation under both salt and drought stress conditions, indicating that it plays an important role in tolerance towards these stresses. In conclusion, expression analysis of bZIP gene from finger millet seed cultivar ML-365 showed 5-fold upregulation to salt stress to drought stress and 8-fold upregulation to salt stress. Hence, it can serve as a candidate gene for improving abiotic stress tolerance and can be helpful in enhancing the crop productivity under stress conditions.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
F Nabbie ◽  
O Shperdheja ◽  
J Millot ◽  
J Lindberg ◽  
B Peethambaran

Sign in / Sign up

Export Citation Format

Share Document