FORMATION OF ATYPICAL TUBULIN STRUCTURES IN CELLS OF PLANTS FROM SOLANA-CEAE FAMILY IN RESPONSE TO ABIOTIC STRESS CONDITIONS

Author(s):  
E.N. BARANOVA ◽  
◽  
I.A. CHABAN ◽  
L.R. BOGOUTDINOVA ◽  
L.V. KURENINA ◽  
...  
2019 ◽  
Vol 6 (04) ◽  
Author(s):  
JESHIMA KHAN YASIN ◽  
ANIL KUMAR SINGH

Cytoplasmic streaming is one among the vital activities of the living cells. In plants cytolplasmic streaming could clearly be seen in hypocotyls of growing seedlings. To observe cytoplsmic streaming and its correlated intracellular trafficking an investigation was conducted in legumes in comparison with GFP-AtRab75 and 35S::GFP:δTIP tonoplast fusion protein expressing arabidopsis lines. These seedlings were observed under confocal microscopy with different buffer incubation treatments and under different stress conditions. GFP expressing 35S::GFP:δTIP tonoplast lines were looking similar to the control lines and differ under stress conditions. Movement of cytoplasmic invaginations within the tonoplast and cytoplasmic sub vesicle or bulb budding during cytoplasmic streaming was observed in hypocotyls of At-GFP tonoplast plants. We found the cytoplasmic bulbs/ vesicles or sub vesicle formation from the plasma membrane. The streaming speed also depends on the incubation medium in which the specimen was incubated, indicating that the external stimuli as well as internal stimuli can alter the speed of streaming


2021 ◽  
Vol 22 (13) ◽  
pp. 7235
Author(s):  
Md. Tahjib-Ul-Arif ◽  
Mst. Ishrat Zahan ◽  
Md. Masudul Karim ◽  
Shahin Imran ◽  
Charles T. Hunter ◽  
...  

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA’s involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.


2017 ◽  
Vol 36 (12) ◽  
pp. 1971-1984 ◽  
Author(s):  
Vicente Vives-Peris ◽  
Aurelio Gómez-Cadenas ◽  
Rosa María Pérez-Clemente

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


2008 ◽  
Vol 49 (10) ◽  
pp. 1563-1571 ◽  
Author(s):  
Jin Sun Kim ◽  
Kyung Ae Kim ◽  
Tae Rin Oh ◽  
Chul Min Park ◽  
Hunseung Kang

Sign in / Sign up

Export Citation Format

Share Document