scholarly journals Asymptotic Expansions of Navier-Stokes Solutions for Small Reynolds Numbers

1957 ◽  
Vol 6 (4) ◽  
pp. 585-593 ◽  
Author(s):  
Saul Kaplun ◽  
P. Lagerstrom
2011 ◽  
Vol 685 ◽  
pp. 461-494 ◽  
Author(s):  
Alain Merlen ◽  
Christophe Frankiewicz

AbstractThe flow around a cylinder rolling or sliding on a wall was investigated analytically and numerically for small Reynolds numbers, where the flow is known to be two-dimensional and steady. Both prograde and retrograde rotation were analytically solved, in the Stokes regime, giving the values of forces and torque and a complete description of the flow. However, solving Navier–Stokes equation, a rotation of the cylinder near the wall necessarily induces a cavitation bubble in the nip if the fluid is a liquid, or compressible effects, if it is a gas. Therefore, an infinite lift force is generated, disconnecting the cylinder from the wall. The flow inside this interstice was then solved under the lubrication assumptions and fully described for a completely flooded interstice. Numerical results extend the analysis to higher Reynolds number. Finally, the effect of the upstream pressure on the onset of cavitation is studied, giving the initial location of the phenomenon and the relation between the upstream pressure and the flow rate in the interstice. It is shown that the flow in the interstice must become three-dimensional when cavitation takes place.


Author(s):  
Patricio I. Rosen Esquivel ◽  
Jan H. M. ten Thije Boonkkamp ◽  
Jacques A. M. Dam ◽  
Robert M. M. Mattheij

In this paper we study the effect of wall-shape on laminar flow in corrugated pipes. The main objectives of this paper are to characterize how the flow rate varies with wall-shape, and to identify which shapes enhance the flow rate. We conduct our study by numerically solving the Navier-Stokes equations for a periodic section of the pipe. The numerical model is validated with experimental data on the pressure drop and friction factor. The effect of wall-shape is studied by considering a family of periodic pipes, in which the wall-shape is characterized by the amplitude, and the ratio between the lengths of expansion and contraction of a periodic section. We study the effect that varying these parameters has on the flow. We show that for small Reynolds numbers, a symmetric shape yields a higher flow rate than an asymmetric shape. For large Reynolds numbers, a configuration with a large expansion region, followed by a short contraction region, performs better. We show that when the amplitude is fixed, there exists an optimal ratio of expansion/contraction which maximizes the flow rate. The flow rate can be increased by 8%, for a geometry with small period; in the case of a geometry with large period, the flow rate increases by 35%, for large Reynolds number, and even 120% for small Reynolds numbers.


1957 ◽  
Vol 2 (3) ◽  
pp. 237-262 ◽  
Author(s):  
Ian Proudman ◽  
J. R. A. Pearson

This paper is concerned with the problem of obtaining higher approximations to the flow past a sphere and a circular cylinder than those represented by the well-known solutions of Stokes and Oseen. Since the perturbation theory arising from the consideration of small non-zero Reynolds numbers is a singular one, the problem is largely that of devising suitable techniques for taking this singularity into account when expanding the solution for small Reynolds numbers.The technique adopted is as follows. Separate, locally valid (in general), expansions of the stream function are developed for the regions close to, and far from, the obstacle. Reasons are presented for believing that these ‘Stokes’ and ‘Oseen’ expansions are, respectively, of the forms $\Sigma \;f_n(R) \psi_n(r, \theta)$ and $\Sigma \; F_n(R) \Psi_n(R_r, \theta)$ where (r, θ) are spherical or cylindrical polar coordinates made dimensionless with the radius of the obstacle, R is the Reynolds number, and $f_{(n+1)}|f_n$ and $F_{n+1}|F_n$ vanish with R. Substitution of these expansions in the Navier-Stokes equation then yields a set of differential equations for the coefficients ψn and Ψn, but only one set of physical boundary conditions is applicable to each expansion (the no-slip conditions for the Stokes expansion, and the uniform-stream condition for the Oseen expansion) so that unique solutions cannot be derived immediately. However, the fact that the two expansions are (in principle) both derived from the same exact solution leads to a ‘matching’ procedure which yields further boundary conditions for each expansion. It is thus possible to determine alternately successive terms in each expansion.The leading terms of the expansions are shown to be closely related to the original solutions of Stokes and Oseen, and detailed results for some further terms are obtained.


1970 ◽  
Vol 37 (2) ◽  
pp. 480-487 ◽  
Author(s):  
Hsien-Ping Pao

A numerical investigation of a viscous incompressible fluid confined in a closed circular cylindrical container is made. The top and side wall are in rotation with a constant angular velocity, and the bottom is held fixed. A numerical scheme using the full Navier-Stokes equations is developed. For small or moderate Reynolds numbers (Re = ΩL2/ν), the convergence of iteration is quite rapid. When the Reynolds number increases, the flow in the bottom boundary layer and the viscous core is intensified. An initial value problem is also investigated for Re = 1000 and 5000. The flow development of the bottom boundary layer and the viscous core is clearly exhibited. Some experimental investigation is also made. The numerical solution agrees very well with the analytic solution for small Reynolds numbers and with the experimental observation for moderate and high Reynolds numbers.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Rosemarie Mohais ◽  
Balswaroop Bhatt

We examine the heat transfer in a Newtonian fluid confined within a channel with a lower permeable wall. The upper wall of the channel is impermeable and driven by an accelerating surface velocity. Through a similarity solution, the Navier–Stokes equations are reduced to a fourth-order differential equation; the analytical solutions of which determined for small Reynolds numbers show dependence of the temperature and heat transfer profiles on the slip parameter based on the properties of the porous channel base. For larger Reynolds numbers, numerical solutions for three main groups of solutions show that the Reynolds number strongly influences the heat transfer profile. However, the slip conditions associated with the porous base of the channel can be used to alter these heat transfer profiles for large Reynolds numbers. The presence of a porous base in a channel can thus serve as an effective means of reducing or enhancing heat transfer performance in model systems.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


1983 ◽  
Vol 48 (6) ◽  
pp. 1579-1587 ◽  
Author(s):  
Ondřej Wein

Solution of the title problem for the power-law model of viscosity function is constructed by the method of small parameter in the region of small Reynolds numbers. The main result of the paper is a quantitative estimation of the values of Re, when the influence of inertia on flow enhancement may be quite neglected.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


Sign in / Sign up

Export Citation Format

Share Document