scholarly journals Numerical Assessment of a One-Mass Spring-Based Electromagnetic Energy Harvester on a Vibrating Object

2016 ◽  
Vol 41 (1) ◽  
pp. 119-131 ◽  
Author(s):  
Min-Chie Chiu ◽  
Ying-Chun Chang ◽  
Long-Jyi Yeh ◽  
Chiu-Hung Chung

Abstract The paper is an exploration of the optimal design parameters of a space-constrained electromagnetic vibration-based generator. An electromagnetic energy harvester is composed of a coiled polyoxymethylen circular shell, a cylindrical NdFeB magnet, and a pair of helical springs. The magnet is vertically confined between the helical springs that serve as a vibrator. The electrical power connected to the coil is actuated when the energy harvester is vibrated by an external force causing the vibrator to periodically move through the coil. The primary factors of the electrical power generated from the energy harvester include a magnet, a spring, a coil, an excited frequency, an excited amplitude, and a design space. In order to obtain maximal electrical power during the excitation period, it is necessary to set the system’s natural frequency equal to the external forcing frequency. There are ten design factors of the energy harvester including the magnet diameter (Dm), the magnet height (Hm), the system damping ratio (ζsys), the spring diameter (Ds), the diameter of the spring wire (ds), the spring length (ℓs), the pitch of the spring (ps), the spring’s number of revolutions (Ns), the coil diameter (Dc), the diameter of the coil wire (dc), and the coil’s number of revolutions (Nc). Because of the mutual effects of the above factors, searching for the appropriate design parameters within a constrained space is complicated. Concerning their geometric allocation, the above ten design parameters are reduced to four (Dm, Hm, ζsys, and Nc). In order to search for optimal electrical power, the objective function of the electrical power is maximized by adjusting the four design parameters (Dm, Hm, ζsys, and Nc) via the simulated annealing method. Consequently, the optimal design parameters of Dm, Hm, ζsys, and Nc that produce maximum electrical power for an electromagnetic energy harvester are found.

2018 ◽  
Vol 37 (1) ◽  
pp. 90-106 ◽  
Author(s):  
Min-Chie Chiu ◽  
Ying-Chun Chang ◽  
Long-Jyi Yeh ◽  
Chiu-Hung Chung

In this paper, a theoretical mathematical model in conjunction with an electrical generation model is examined. Using a simulated algorithm, the optimal design of a two-mass energy harvester that finds the maximal electrical power will be assessed. Before the optimal design is performed, the influence of the electrical power with respect to design parameters such as the magnet’s height, the diameter, the stiffness of the lower springs, the stiffness of the upper springs, the revolution of the lower coil, the revolution of the upper coil, the diameter of the coil’s wire, and the electrical resistance of the loading will be analyzed. Results reveal that the design parameters play essential roles in maximizing electrical power. The two mode shapes of the two-mass energy harvester also occur at the targeted forcing frequencies. The electrical power is optimally extracted at the two primary forcing frequencies, i.e. 12 and 30 Hz. Moreover, it is obvious that the induced electrical power of the two-mass energy harvester will be superior to that of the one-mass energy harvester.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Ruei-Tang Chen ◽  
Chih-Chieh Kang ◽  
Jeng-Feng Lin ◽  
Sheng-Wei Chiou ◽  
Hung-Hsiang Cheng ◽  
...  

Building integrated photovoltaics (BIPV) are an important application of future solar energy development. The incorporation of solar cells into windows must not only maintain indoor natural lighting but also generate electrical power at the same time. In our continuing effort to improve the design of diffusion solar window, a more fundamental and efficient three-layer structure—glass/EVA with TiO2nanoparticles embedded/glass—was proposed. In this work, a well-established ASAP ray-tracing model for a diffusive solar cell window was implemented to validate the outperformance of three-layer structure over primitive five-layer structure. Optical simulations were also implemented to perform its primary design for the determination of the optimal design parameters, such as the glass thickness, the EVA thickness, and the weight concentration of TiO2nanoparticles. Based on the simulation results, an optimal design for a three-layer diffusive solar cell window prototype was proposed. And the influence of both EVA thickness and glass thickness on the power edge-exitance (solar cell power generation efficiency) of a DSCW was thoroughly investigated.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Sadia Bakhtiar ◽  
Farid Ullah Khan

This paper presents the analytical modeling and simulation of an electromagnetic energy harvester (having linear behaviour) that generates power from pulsating fluid flow for pipeline condition monitoring systems. The modeled energy harvester is comprised of a cylindrical permanent magnet and a wound coil attached to a flexible membrane which oscillates due to the pulsating fluid flow in the pipe over which the prototype is considered to be mounted. In the harvester electrical energy is produced due to the relative motion between the coil and magnet. Based on the harvester’s architecture a lumped parameter model (single degree of freedom system) is developed and is simulated at different physical operational conditions. The simulation is performed at pressure amplitude of 625 Pa. When subjected to the operational frequency sweep, at the harvester’s resonant frequency (500 Hz) and damping ratio of 0.01, the devised model predicted the maximum open circuit voltage of 2.55 V and load voltage of 1.27 V. While operating under resonance, the maximum load voltage of 2.45 V is estimated at load resistance of 100 Ω. However, at an optimum load of 4.3 Ω, the simulation shows a production of 188151.2 μW power at a frequency of 500 Hz.


1997 ◽  
Vol 119 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Changzhi Cui ◽  
Kyosuke Ono

Static and dynamic characteristics of an externally pressurized porous annular thrust gas bearing (PATGB), which has a thin restricted surface layer, are investigated by numerical analysis and experiment. In the analysis, it is assumed that the fluid flow obeys Darcy’s law in the porous material, restricted with Darcy’s restrictor (Darcy-Darcy model) or orifice restrictor (Darcy-Orifice model) in the surface layer. From experimental investigation, it is found that the theoretical results calculated by the Darcy-Darcy model agree with the experimental data better than those of the Darcy-Orifice model. Based on the Darcy-Darcy model, the unique relationships among the design parameters, which can provide the maximum damping ratio, were derived as functions of feeding parameter under the conditions of allowable static stiffness and the local minimum dynamic stiffness. Considering the dimensionless mass of the body supported by the bearing, an optimal design method is proposed to maximize the damping ratio at the natural frequency, while maintaining the required stiffness in the low frequency region.


Designs ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Michel Ullrich ◽  
Maik Wolf ◽  
Mathias Rudolph ◽  
Wolfgang Diller

This paper presents the development of an electromagnetic energy harvester for electrical supply of a sensor unit integrated on the rotating inner ring of a rolling bearing. This energy harvester is of special interest for condition monitoring tasks on rotating shafts. A sensory monitor on the inner ring can detect wear conditions at an early stage. The harvester works without mechanical and energetic contact to surrounding components by utilizing the rotational energy of the shaft. The functionality of the Energy Harvester is enabled by the inertia principle, which is caused by an asymmetrical mass distribution. We provide simulations to validate the designs. This work includes simulation studies on the electrical power output of the harvester. Therefore, the necessary simulation of the magnetic problems is realized in a substitute simulation environment. The harvester design enables existing machines to be equipped with the harvester to provide an energy supply on rotating shafts. This clamp connection enables shaft mounting independent of location without mechanical work on the shaft. With an electrical power of up to 163.6 m W, at 3600 rpm, the harvester is used as an energy supply, which enables sensor-based monitoring of slow wear processes.


2012 ◽  
Vol 28 (4) ◽  
pp. 691-700 ◽  
Author(s):  
M.-C. Chiu ◽  
Y.-C. Chang ◽  
L.-J. Yeh ◽  
C.-H. Chung

ABSTRACTThis paper presents the optimal design of an electromagnetic vibration-based generator using the simulated annealing method (SA). To optimally extract the vibrational energy of a system vibrating at a specific frequency, the selected mass and spring stiffness of a resonant vibration is required. The relationship between induced energy and the generator's structure, its permanent magnet height and diameter, number of turns, and wire diameter in a single air coil are discussed. Also, a prototype of the vibrationbased electrical generator is built and tested via a shaker excited at resonance frequency and input amplitude of 0.06mm. Consequently, results reveal that the design parameters (permanent magnet height and diameter, number of turns, and wire diameter) play essential roles in maximizing electrical power.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shoaib Khanmohammadi ◽  
Kazem Atashkari ◽  
Ramin Kouhikamali

The use of biomass due to the reduction in greenhouse gas emissions and environmental impacts has attracted many researchers’ attention in the recent years. Access to an energy conversion system which is able to have the optimum performance for applying valuable low heating value fuels has been considered by many practitioners and scholars. This paper focuses on the accurate modeling of biomass gasification process and the optimal design of a multigeneration system (heating, cooling, electrical power, and hydrogen as energy carrier) to take the advantage of this clean energy. In the process of gasification modeling, a thermodynamic equilibrium model based on Gibbs energy minimization is used. Also, in the present study, a detailed parametric analysis of multigeneration system for undersigning the behavior of objective functions with changing design parameters and obtaining the optimal design parameters of the system is done as well. The results show that with exergy efficiency as an objective function this parameter can increase from 19.6% in base case to 21.89% in the optimized case. Also, for the total cost rate of system as an objective function it can decrease from 154.4 $/h to 145.1 $/h.


1992 ◽  
Vol 114 (2) ◽  
pp. 280-283
Author(s):  
H. Ashrafiuon

This paper presents the effect of foundation flexibility on the optimum design of vibration absorbers. Flexibility of the base is incorporated into the absorber system equations of motion through an equivalent damping ratio and stiffness value in the direction of motion at the connection point. The optimum values of the uncoupled natural frequency and damping ratio of the absorber are determined over a range of excitation frequencies and the primary system damping ratio. Optimal design parameters are computed and compared for the rigid, and flexible models of the base as well as different levels of base flexibility.


1993 ◽  
Vol 115 (3) ◽  
pp. 380-384 ◽  
Author(s):  
Yuyi Lin ◽  
P. H. Hodges ◽  
A. P. Pisano

Based on a previously developed and verified helical spring dynamic model, optimization and FFT subroutines have been added to the spring dynamic model as controlling and postprocessing units to form a computer-based optimal design tool. The objective function minimized is the amplitude of spring resonance. Design variables are the coefficients of a polynomial which describes the variation of the diameter of the spring wire along the spring helix. Constraints are the maximum fatigue stress at any location of the spring wire, the minimum and maximum wire diameter, and the maximum required spring force. In a case study for an automobile engine valve spring, resonant harmonic power has been reduced by 47 percent, given the newly designed spring a potential to be used at 8.3 percent higher engine speed before potential valve toss occurs.


2017 ◽  
Vol 53 (11) ◽  
pp. 1-5 ◽  
Author(s):  
Hyeonseok Lee ◽  
Myounggyu D. Noh ◽  
Young-Woo Park

Sign in / Sign up

Export Citation Format

Share Document