scholarly journals Effect of the duration of high air temperature on cow’s milking performance in moderate climate conditions

2018 ◽  
Vol 18 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Piotr Herbut ◽  
Sabina Angrecka ◽  
Dorota Godyń

Abstract The main aim of the presented investigation was to determine the effect of the air thermal conditions variability on cow’s milking performance in summer in a moderate climate. The analyses covered the summer months of 2012-2013 (June-September) and shorter, several-day periods characterized by the times of elevated or high air temperatures and by the declines and increases in milking performance. The research was conducted in a free stall barn for Holstein-Friesian cows. The study showed that the thermoneutral temperature for high yielding cows decreases gradually with the registered increasingly warmer summer periods. The decreases in milk yield already commence at an air temperature equal to 20°C and also depend on the dairy cattle sensitivity. July and August, with a high number of hot days, caused that in September the cows responded faster to a worsening of thermal conditions and the decline in milking performance happened almost simultaneously with the air temperature change, at milking yield recovery after the period of 3-4 d (r=-0.84, P<0.04). The percent duration in the individual temperature ranges which caused a decrease of milk yield was also determined. In June, and at the beginning of July, this was 90% of the time with temperatures above 20°C, and simultaneously 45% above 25°C occurred to milking performance decrease (r=-0.89, P<0.02). In September, this was only 30% of the time with temperatures above 20°C (r=-0.91, P<0.01).

Author(s):  
MARGARYAN V.G. ◽  

The features of the thermal regime of the surface air layer in the Debed river basin are considered. A statistical analysis of the average annual and average seasonal values of air temperature from 1964 to 2018 was carried out, two periods were identified, their time course was shown. The analysis was carried out using data from six meteorological stations representing the lowland, mountain and high-mountain climatic zones of the Debed river basin. A correlation was obtained between the absolute altitude and the monthly average values of air temperature for January and July, which can be used to assess the thermal conditions of unexplored or poorly studied territories and for cartography. The time course of average values of air temperatures for the seasonal period has been studied. Analysis of trend lines of temporal changes in air temperatures shows that in all situations on the territory of the basin as a whole, there is a tendency of temperature growth. Moreover, with a range of interannual fluctuations, a break in the course of temperatures in the early to mid 1990 is clearly visible, after which their significant increase began. It turned out that a significant increase in seasonal temperatures is observed especially over the period 1993-2018, which means that the annual warming after the mid 1990 occurred primarily due to summer and spring seasons. The regular dynamics indicates that in the studied area in terms of temperatures, a tendency of softening winters, a decrease in the water content of rivers, aridization of the climate. The results obtained can be used to assess the regularities of the spatial-temporal distribution of the temperature of the study area, to clarify the thermal balance, for the rational use of heat resources, as well as in the development of strategic programs for longterm analysis.


2019 ◽  
Vol 116 ◽  
pp. 00085
Author(s):  
Sylwia Szczęśniak ◽  
Juliusz Walaszczyk

The knowledge about dynamic changing heating and cooling load in existing building is essential for proper energy management. Whenever existing building is analyzed or ventilation system is going optimized, it’s essential to estimate temporary sensible and latent heat based on historical data. The basic conditions for heat calculations are quasi-stable thermal conditions. If supply air temperature significantly varies in short time, what happens very often, the calculations can give untrue results. The procedure described in this article improves usability of measured data affected by rapid supply air temperature changing. Therefore real sensible and latent heat can be calculated, what it is important for future optimization process. Specified, on the basis of varying supply and exhaust air temperatures, thermal loads range from -55.8 kW to 40.7 kW was substitute to more authentic range from -14.1 kW to 51.2 kW received from the conducted simulations. In addition, the data obtained from the simulation showed that latent heat gains were associated with the air temperature in the room, and not with the operation mode of the ventilation unit (day/night) as observed on the basis of historical data.


1958 ◽  
Vol 38 (1) ◽  
pp. 10-22 ◽  
Author(s):  
M. A. MacDonald ◽  
J. M. Bell

This report presents data on the effect of low fluctuating ambient air temperatures on the rectal temperature, heart rate, and respiration rate in lactating Holstein-Friesian cows.Daily minimum ambient air temperature (DMAAT) inside the uninsulated University of Saskatchewan loose-housing shed ranged from −5° F. to 38° F. As ambient temperature decreased, rectal temperature and heart rate increased, while respiration rate decreased. Levels of significance were 10, 9, and 1 per cent for regressions of rectal temperature, heart rate, and respiration rate, respectively, on DMAAT. Levels of significance were 7, 10, and 1 per cent for regressions of rectal temperature, heart rate, and respiration rate, respectively, on degree hours per day (d-h/day). Degree hours per day is a measurement unit developed by the authors and is based on time and difference in degrees from 50° F.Change in rectal temperature and heart rate were not significantly (P = >.05) correlated with either change in d-h/day or change in DMAAT. Change in respiration rate was significantly (P = <.02) and negatively correlated with change in d-h/day and significantly (P = <.06) and positively correlated with change in DMAAT.Heart rate, rectal temperature, and respiration rate were not significantly correlated with each other. However, change in respiration rate was positively correlated with change in rectal temperature (P = <.03).While the influence of low temperatures resulted in small changes in these physiological characteristics compared to those experienced elsewhere in high temperature zones, it cannot be concluded that lactating cows were entirely free of thermal stress at temperatures as low as 0° F.


2016 ◽  
Vol 20 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Anna Staszczuk ◽  
Tadeusz Kuczyński

Abstract The effects of changes in Global climate on the prolonging time and the frequency of the periods of very high outside air temperature at summer were shown in the paper with particular emphasis on European moderate climate countries. In these countries, residential buildings, are usually equipped neither in air conditioning equipment, nor in ordinary window blinds. As the most promising solution it is suggested to resign completely or partially from ground slab thermal insulation, directly utilizing ground heat storage capacity. The paper includes detailed simulations on potential effect of various kind of floor construction and actions preventing high indoor air temperatures in building approach on air temperature inside the one-storey, passive residential buildings during consecutive days of very high outdoor temperature and total energy used yearly for additional heating and air conditioning.


2015 ◽  
Vol 54 (12) ◽  
pp. 2339-2352 ◽  
Author(s):  
S.-Y. Simon Wang ◽  
Lawrence E. Hipps ◽  
Oi-Yu Chung ◽  
Robert R. Gillies ◽  
Randal Martin

AbstractBecause of the geography of a narrow valley and surrounding tall mountains, Cache Valley (located in northern Utah and southern Idaho) experiences frequent shallow temperature inversions that are both intense and persistent. Such temperature inversions have resulted in the worst air quality in the nation. In this paper, the historical properties of Cache Valley’s winter inversions are examined by using two meteorological stations with a difference in elevation of approximately 100 m and a horizontal distance apart of ~4.5 km. Differences in daily maximum air temperature between two stations were used to define the frequency and intensity of inversions. Despite the lack of a long-term trend in inversion intensity from 1956 to present, the inversion frequency increased in the early 1980s and extending into the early 1990s but thereafter decreased by about 30% through 2013. Daily mean air temperatures and inversion intensity were categorized further using a mosaic plot. Of relevance was the discovery that after 1990 there was an increase in the probability of inversions during cold days and that under conditions in which the daily mean air temperature was below −15°C an inversion became a certainty. A regression model was developed to estimate the concentration of past particulate matter of aerodynamic diameter ≤ 2.5 μm (PM2.5). The model indicated past episodes of increased PM2.5 concentrations that went into decline after 1990; this was especially so in the coldest of climate conditions.


2016 ◽  
Vol 28 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Katarzyna Adamczewska-Sowińska ◽  
Magdalena Krygier ◽  
Joanna Turczuk

Abstract The field production of eggplant in moderate climates is difficult as it depends heavily on thermal conditions. Eggplant is a species that is sensitive to low temperatures, and temperatures below 16°C constrain the growth of young plants. Other disadvantageous factors include: temperatures that are too high, water shortage and excessive soil humidity. The growth conditions for eggplant can be improved by using mulches. The purpose of the experiment was the assessment of eggplant cropping while using synthetic mulches of polyethylene foil and polypropylene textile. The research took five years (2008-2012) and on the basis of the obtained results it was possible to determine the influence of weather conditions on the yielding of this species. It was proven that eggplant cropping significantly depended on the air temperature and the amount of rainfall during the vegetation period. The highest yield was observed when the average air temperature was high and at the same time rainfall was evenly distributed throughout the vegetation season. It also turned out that the agro-technical procedure which significantly increased eggplant fruit cropping was mulching the soil with polyethylene black foil, or transparent foil, previously having applied a herbicide.


2011 ◽  
Vol 4 (1) ◽  
pp. 1001-1019 ◽  
Author(s):  
M. Buttstädt ◽  
T. Sachsen ◽  
G. Ketzler ◽  
H. Merbitz ◽  
C. Schneider

Abstract. In different fields of applied local climate investigation, highly resolved data of air temperature are of great importance. As a part of the research programme entitled City2020+, which deals with future climate conditions in agglomerations, this study focuses on increasing the quantity of urban air temperature data intended for the analysis of their spatial distribution. A new measurement approach using local transport buses as "riding thermometers" is presented. By this means, temperature data with a very high temporal and spatial resolution could be collected during scheduled bus rides. The data obtained provide the basis for the identification of thermally affected areas and for the investigation of factors in urban structure which influence the thermal conditions. Initial results from the ongoing study, which show the temperature distribution along different traverses through the city of Aachen, are presented.


Author(s):  
Aguilera ◽  
Andersen ◽  
Toftum

Non-optimal air temperatures can have serious consequences for human health and productivity. As the climate changes, heatwaves and cold streaks have become more frequent and intense. The ClimApp project aims to develop a smartphone App that provides individualised advice to cope with thermal stress outdoors and indoors. This paper presents a method to predict indoor air temperature to evaluate thermal indoor environments. Two types of input data were used to set up a predictive model: weather data obtained from online weather services and general building attributes to be provided by App users. The method provides discrete predictions of temperature through a decision tree classification algorithm. The data used to train and test the algorithm was obtained from field measurements in seven Danish households and from building simulations considering three different climate regions, ranging from temperate to hot and humid. The results show that the method had an accuracy of 92% (F1-score) when predicting temperatures under previously known conditions (e.g., same household, occupants and climate). However, the performance decreased to 30% under different climate conditions. The approach had the highest performance when predicting the most commonly observed indoor temperatures. The findings suggest that it is possible to develop a straightforward and fairly accurate method for indoor temperature estimation grounded on weather data and simple building attributes.


2020 ◽  
Vol 63 (4) ◽  
pp. 1087-1098
Author(s):  
Ibukun Timothy Ayankojo ◽  
Kelly R. Thorp ◽  
Kelly Morgan ◽  
Kritika Kothari ◽  
Srinivasulu Ale

HighlightsCotton yield was reduced significantly under projected future climate conditions for the Arizona low desert (ALD). Of all the weather variables, yield reduction was primarily due to projected increases in daily maximum and minimum air temperatures.Cotton reproductive stages were more susceptible to heat stress than vegetative stages. Projected increases in air temperature may result in a slight increase in cotton growth or biomass production; however, heat stress significantly reduced fruit retention, leading to lower boll number and yield.Although future increases in CO2 may improve plant growth and productivity, the potential benefit of CO2 fertilization on cotton growth and yield in the ALD was offset by the projected increase in air temperature.The projected average seasonal irrigation requirement increased by at least 10%. This suggests that greater demand for freshwater withdrawal for agriculture can be expected in the future. Therefore, given the projected change in future climate, cotton cultivars tolerant of longer periods of high air temperature, changes in planting dates, and improved management practices for higher water productivity are critical needs for sustainable cotton production in the ALD.Abstract. Cotton is an important crop in Arizona, with a total cash value of approximately $200 million for fiber and cottonseed in 2018. In recent years, heat stress from increasing air temperature has reduced cotton productivity in the Arizona low desert (ALD); however, the effects of future climate on ALD cotton production have not been studied. In this study, the DSSAT CSM-CROPGRO-Cotton model was used to simulate the effects of future climate on cotton growth, yield, and water use in the ALD area. Projected climate forcings for the ALD were obtained from nine global climate models under two representative concentration pathways (RCP 4.5 and 8.5). Cotton growth, yield, and water use were simulated for mid-century (2036 to 2065) and late century (2066 to 2095) and compared to the baseline (1980 to 2005). Results indicated that seed cotton yield was reduced by at least 40% and 51% by mid-century and late century, respectively, compared to the baseline. Of all the weather variables, the seasonal average maximum (R2 = 0.72) and minimum (R2 = 0.80) air temperatures were most correlated with yield reductions. Under the future climate conditions of the ALD, cotton growth or biomass accumulation slightly increased compared to the baseline. Irrigation requirements in the ALD increased by at least 10% and 14% by mid-century and late century, respectively. Increases in irrigation requirements were due to an increase in crop water use; hence, greater demand for freshwater withdrawal for agricultural purposes is anticipated in the future. Therefore, cotton cultivars that are tolerant of long periods of high air temperature and improved management practices that promote efficient crop water use are critical for future sustainability of cotton production in the ALD. Keywords: . Arid region, CSM-CROPGRO-Cotton, Future climate, Gossypium hirsutum L., Heat stress, Irrigation demand.


2013 ◽  
Vol 54 (62) ◽  
pp. 183-188 ◽  
Author(s):  
Satoru Yamaguchi ◽  
Katsushi Iwamoto ◽  
Sento Nakai

AbstractRegions of Japan facing the Sea of Japan have some of the world’s deepest seasonal snowpack, although air temperatures averaged over the coldest winter months (January-February) are above 0°C in this mid-altitude zone (35–40˚ N). Therefore, even a slight temperature increase is likely to drastically decrease the snow depth in this area by changing the precipitation form from snow to rain. In this study, to enhance understanding of winter precipitation conditions, we introduce the winter precipitation curve (WPC), which plots the distribution of winter precipitation (December-February) against the corresponding air temperature using hourly data. We then examine the relationship between the WPC and regional climate conditions. The WPC was classified into two types in the study: the single-peak (SP) type, having one sharp peak near 0°C, and the multiple-peaks (MP) type, having several small peaks. Here ‘peak’ indicates that precipitation frequently occurs at a certain temperature. Peaks of the MP type changed position with fluctuations in mean winter temperature, but the peak of the SP type moved only slightly despite annual fluctuations in winter mean temperature. One of the multiple peaks of the MP type appeared at ∼0°C and this peak also remained nearly stationary with fluctuations in winter mean temperature. The peak of the WPC appearing near 0°C in both the SP and MP types likely resulted from the development of the 0°C isothermal layer due to the cooling effect of melting snow particles.


Sign in / Sign up

Export Citation Format

Share Document