scholarly journals Estimation of Slant Tropospheric Delays from GNSS Observations with Using Precise Point Positioning Method

2018 ◽  
Vol 25 (1) ◽  
pp. 253-266
Author(s):  
Stepan Savchuk ◽  
Alina Khoptar

AbstractGlobal Navigation Satellite Systems give opportunities for atmospheric parameters analysis in behalf of solving many atmosphere monitoring tasks. The authors of this article demonstrated possibility of slant tropospheric delays determination with using precise point positioning method – PPP. The atmospheric parameters, retrieved from GNSS observations, including zenith tropospheric delays, horizontal gradients, and slant tropospheric delays, are analyzed and evaluated. It was obtained slant tropospheric delays, along the satellite path, for each satellite, at a certain elevation angle and azimuth, at each time, instead of obtaining a single zenith tropospheric delay composed of all visible satellites at one time. The results obtained proved that suggested method was correct.

2017 ◽  
Vol 70 (6) ◽  
pp. 1241-1252
Author(s):  
Burak Akpınar ◽  
Nedim Onur Aykut

After Global Navigation Satellite Systems (GNSS) were first used in the field of hydrography in 1980, developments in hydrographic surveying accelerated. Survey precision in hydrography has been improved for both horizontal and vertical positioning and seafloor acoustic measurement by means of these new developments. Differential Global Positioning System (DGPS), Real Time Kinematic (RTK) and Network RTK (NRTK) techniques are the satellite-based positioning techniques that are commonly used in shallow water surveys and shoreline measurements. In line with these developments, the newer Precise Point Positioning (PPP) has been introduced. Combining precise satellite positions and clocks with dual-frequency GNSS data, PPP can provide position solutions from the centimetre to decimetre level. In this study, the coordinates of control points were determined by using the Post-Process PPP (PP-PPP) technique. Seven test points, which are the points of the Continuously Operating Reference Station - Turkey (CORS-TR) network, are selected near the shorelines within Turkey. The 24-hour data was split from one to six hours by one hour periods. Automatic Point Positioning Service (APPS) was selected to process the data. The poisoning error of the test points were given and compared with International Hydrographic Organization (IHO) S44 hydrographic survey standards.


2020 ◽  
Vol 50 ◽  
pp. 77-86
Author(s):  
Nabila Putri ◽  
Daniel Landskron ◽  
Johannes Böhm

Abstract. Tropospheric delay is one of the major error sources for space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS). Mapping functions are used to scale the delay from zenith direction to the elevation angle of the signal. Several mapping functions have already been published, including the Global Mapping Functions (GMF) and Vienna Mapping Functions 1 (VMF1). Recently, a refined version of VMF1, VMF3, was released. The tropospheric gradients GRAD were also determined using the same data set as VMF3. This study aims to test the performance of VMF3 on GNSS observations in Indonesia, using observations from 21 stations of the permanent GNSS network in Indonesia, InaCORS. Data processing was carried out using Precise Point Positioning in Bernese GNSS Software, version 5.2 for the year 2014. Station coordinates were estimated daily, while the zenith wet delays were estimated every 30 min and tropospheric gradients were estimated hourly. A similar processing scheme was carried out using GMF and VMF1. Generally, the results from VMF3 agree very well with the results from GMF and VMF1, although small biases can be found, especially for the height component. Based on the repeatability, while there is no significant difference for the latitude and longitude, there are slight improvements for the height, particularly compared to GMF. The estimated gradients tend to fluctuate more compared to gradients from GRAD. The correlation coefficients between the estimated gradients and those from GRAD are small, with the largest being 0.65 at site CUKE.


2020 ◽  
Vol 12 (18) ◽  
pp. 3080
Author(s):  
Jinglei Zhang ◽  
Xiaoming Wang ◽  
Zishen Li ◽  
Shuhui Li ◽  
Cong Qiu ◽  
...  

Global navigation satellite systems (GNSSs) have become an important tool to derive atmospheric products, such as the total zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) for weather and climate studies. The ocean tide loading (OTL) effect is one of the primary errors that affects the accuracy of GNSS-derived ZTD/PWV, which means the study and choice of the OTL model is an important issue for high-accuracy ZTD estimation. In this study, GNSS data from 1 January 2019 to 31 January 2019 are processed using precise point positioning (PPP) at globally distributed stations. The performance of seven widely used global OTL models is assessed and their impact on the GNSS-derived ZTD is investigated by comparing them against the ZTD calculated from co-located radiosonde observations. The results indicate that the inclusion or exclusion of the OTL effect will lead to a difference in ZTD of up to 3–15 mm for island stations, and up to 1–2 mm for inland stations. The difference of the ZTD determined with different OTL models is quite small, with a root-mean-square (RMS) value below 1.5 mm at most stations. The comparison between the GNSS-derived ZTD and the radiosonde-derived ZTD indicates that the adoption of OTL models can improve the accuracy of GNSS-derived ZTD. The results also indicate that the adoption of a smaller cutoff elevation, e.g., 3° or 7°, can significantly reduce the difference between the ZTDs determined by GNSS and radiosonde, when compared against a 15° cutoff elevation. Compared to the radiosonde-derived ZTD, the RMS error of GNSS-derived ZTD is approximately 25–35 mm at a cutoff elevation of 15°, and 15–25 mm when the cutoff elevation is set to 3°.


2020 ◽  
Author(s):  
Faruk Can Durmus ◽  
Bahattin Erdogan

<p>Global Navigation Satellite Systems (GNSS) are effectively used for different applications of Geomatic Engineering. There are lots of model error sources that affect the performance of the point positioning. Especially for the Precise Point Positioning (PPP) technique, which depends on the absolute point positioning, these errors should be modelled since PPP technique utilizes un-differenced and ionosphere-free combinations. Studies about PPP technique show that the effect of tropospheric delay caused by water vapor and dry air in the troposphere, which affects GNSS signals, is an important parameter should be modelled. Total zenith delay consists of both hydrostatic and wet delay. Hydrostatic delay can be accurately estimated by using atmospheric surface pressure and temperature with empirical models. Although there are many empirical models currently used for the determination of the zenith wet delay, the accuracies of these models are inadequate due to the temporal and spatial variation of atmospheric water vapor. Moreover, the tropospheric delay occurs along the path of GNSS signals and the Mapping Functions (MFs) are used to convert the tropospheric signal delay along the zenith direction to the slant direction. In this study, it is aimed to measure the effect of the globally produced MFs as Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), Global Mapping Function (GMF) and Global Pressure Temperature model 2 (GPT2) for GNSS positioning accuracy. Only GPS satellite system has been taken into account. For the analysis it has planned to process approximately 294 permanent stations from Crustal Dynamics Data Information System (CDDIS) archive with Jet Propulsion Laboratory’s GipsyX v1.2 software. In order to reveal the effect of different season the GPS observations in January, April, July and October, 2018 have been obtained. The solutions were derived for different session durations as 2, 4, 6, 8, 12 and 24 hours for each global MFs and root mean square values have been estimated for each session durations. According to the first results that based on the six points, which the ellipsoidal heights of them are between 20 m and 105 m, although the results of north and east components are close to each other; the results of VMF1 are better than other global MFs for up component.</p><p> </p><p><strong>Keywords</strong>: State-of-the-Art Mapping Function, Troposphere, Precise Point Positioning, Accuracy, GipsyX</p>


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

AbstractTraditional precise point positioning (PPP) is commonly based on un-differenced ionosphere-free linear combination of Global Positioning System (GPS) observations. Unfortunately, for kinematic applications, GPS often experiences poor satellite visibility or weak satellite geometry in urban areas. To overcome this limitation, we developed a PPP model, which combines the observations of three global navigation satellite systems (GNSS), namely GPS, GLONASS and Galileo. Both un-differenced and between-satellite single-difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase GNSS measurements are processed. The performance of the combined GNSS PPP solution is compared with the GPS-only PPP solution using a real test scenario in downtown Kingston, Ontario. Inter-system biases between GPS and the other two systems are also studied and obtained as a byproduct of the PPP solution. It is shown that the addition of GLONASS observations improves the kinematic PPP solution accuracy in comparison with that of GPS-only solution. However, the contribution of adding Galileo observations is not significant due to the limited number of Galileo satellites launched up to date. In addition, BSSD solution is found to be superior to that of traditional un-differenced model.


2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Ken Harima ◽  
Suelynn Choy ◽  
Chris Rizos ◽  
Satoshi Kogure

AbstractThis paper presents an investigation into the performance of real-time Global Navigation Satellite Systems (GNSS) Precise Point Positioning (PPP) in New Zealand. The motivation of the research is to evaluate the feasibility of using PPP technique and a satellite based augmentation system such as the Japanese Quasi-Zenith Satellite System (QZSS) to deliver a real-time precise positioning solution in support of a nation-wide high accuracy GNSS positioning coverage in New Zealand. Two IGS real-time correction streams are evaluated alongside with the PPP correction messages transmitted by the QZSS satellite known as MDC1. MDC1 corrections stream is generated by Japan Aerospace Exploration Agency (JAXA) using the Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) software and are currently transmitted in test mode by the QZSS satellite. The IGS real-time streams are the CLK9B real-time corrections stream generated by the French Centre National D’études Spatiales (CNES) using the PPP-Wizard software, and the CLK81 real-time corrections stream produced by GMV using their MagicGNSS software. GNSS data is collected from six New Zealand CORS stations operated by Land Information New Zealand (LINZ) over a one-week period in 2015. GPS and GLONASS measurements are processed in a real-time PPP mode using the satellite orbit and clock corrections from the real-time streams. The results show that positioning accuracies of 6 cm in horizontal component and 15 cm in vertical component can be achieved in real-time PPP. The real-time GPS+GLONASS PPP solution required 30 minutes to converge to within 10 cm horizontal positioning accuracy.


2020 ◽  
pp. 1-21 ◽  
Author(s):  
Jian Chen ◽  
Xingwang Zhao ◽  
Chao Liu ◽  
Shaolin Zhu ◽  
Zhiqiang Liu ◽  
...  

The single initial Global Positioning System (GPS) has been expanded into multiple global and regional navigation satellite systems (multi-GNSS/RNSS) as the Global Navigation Satellite System (GLONASS) is restored and the BeiDou Navigation Satellite System (BDS), Galileo Satellite Navigation System (Galileo) and Quasi-Zenith Satellite System (QZSS) evolve. Using the differences among these five systems, the paper constructs a consolidated multi-GNSS/RNSS precise point positioning (PPP) observation model. A large number of datasets from Multi-GNSS Experiment (MGEX) stations are employed to evaluate the PPP performance of multi-GNSS/RNSS. The paper draws three main conclusions based on the experimental results. (1) The combined GPS/GLONASS/Galileo/BDS/QZSS presents the PPP with the shortest mean convergence time of 11·5 min, followed by that of GPS/GLONASS/Galileo/BDS (12·4 min). (2) The combined GPS/GLONASS/BDS/Galileo/QZSS shows the optimal PPP performance when the cut-off elevation angle is basically the same because of the rich observation data due to a large number of satellites. To be specific, for combined GPS/GLONASS/BDS/Galileo/QZSS, the PPP convergence percentage is 80·9% higher relative to other combined systems under 35° cut-off elevation angle, and the percentages of the root mean square values of PPP within 0–5 cm are enhanced by 80·5%, 81·5% and 87·3% in the North, East and Up directions relative to GPS alone at 35° cut-off elevation angle. (3) GPS alone fails to conduct continuous positioning due to the insufficiency of visible satellites at 40° cut-off elevation angle, while the kinematic PPP of multi-GNSS/RNSS remains capable of obtaining positioning solutions with relatively high accuracy, especially in the horizontal direction.


2019 ◽  
Vol 9 (22) ◽  
pp. 4884
Author(s):  
Chunbao Xiong ◽  
Lina Yu ◽  
Lewen Zhao

Tropospheric delay is one main factor affecting the accuracy of precise point positioning (PPP) ambiguity-float and fixed solutions. Investigations mainly focused on evaluating the contributions of tropospheric corrections to the accuracy and reliability of PPP solutions. The tropospheric corrections generally contained the zenith tropospheric delay (ZTD) and the horizontal gradients estimated from relative positioning or PPP. However, the estimated tropospheric delays can be partly absorbed by the carrier phase residuals if the stochastic model is not well-defined. Therefore, along with the ZTD and horizontal gradients, the carrier phase residuals from PPP backward filter are considered to reconstruct slant tropospheric delay (STD). Based on the proposed STD model, its marginal effects on GPS PPP were investigated. Results indicated that the consideration of carrier phase residuals for STD modeling can improve the three-dimensional accuracy to 0.5 cm/1 cm/1.2 cm in the South/North/Up (N/E/U) components. Then, the effects of internal and external STD corrections on PPP float and fixed solutions were analyzed. Compared to the ZTD + gradients augmentation, STD corrections from the same station could improve the PPP accuracy by 51%/51%/60%; the large improvements were because the multipath error and observation noise were eliminated. In comparison, the improvement was 14%/28%/31% using external STD corrections, which indicated the effects of unmodeled tropospheric errors in the phase residuals. The ambiguity-fixing results indicated that the fixing rate of PPP ambiguity was increased by 30% with STD augmentation. As the BeiDou System (BDS) suffered longer convergence than that of GPS, the benefits of STD modeling to the BDS observations were also validated. Overall, the results validated the performance of STD-augmented PPP, which demonstrated the potential application of high-accuracy troposphere products.


Sign in / Sign up

Export Citation Format

Share Document