Automating lane changes and collision avoidance on highways via distributed agreement

2019 ◽  
Vol 67 (12) ◽  
pp. 1047-1057
Author(s):  
Fabio Molinari ◽  
Aaron Grapentin ◽  
Alexandros Charalampidis ◽  
Jörg Raisch

Abstract This work presents a distributed hierarchical control strategy for fleets of autonomous vehicles cruising on a highway with diverse desired speeds. The goal is to design a control scheme that can be employed in scenarios where only vehicle-to-vehicle communication is available and where vehicles need to negotiate and agree on their positions on the road. To this end, after reaching an agreement on the lane speed with other traffic participants, each vehicle decides whether to keep cruising along the current lane or to move into another one. In the latter case, it negotiates the entry point with others by taking part in a distributed auction. An onboard controller computes an optimal trajectory transferring the vehicle with agreed velocity to the desired lane while avoiding collisions.

Author(s):  
Xing Xu ◽  
Minglei Li ◽  
Feng Wang ◽  
Ju Xie ◽  
Xiaohan Wu ◽  
...  

A human-like trajectory could give a safe and comfortable feeling for the occupants in an autonomous vehicle especially in corners. The research of this paper focuses on planning a human-like trajectory along a section road on a test track using optimal control method that could reflect natural driving behaviour considering the sense of natural and comfortable for the passengers, which could improve the acceptability of driverless vehicles in the future. A mass point vehicle dynamic model is modelled in the curvilinear coordinate system, then an optimal trajectory is generated by using an optimal control method. The optimal control problem is formulated and then solved by using the Matlab tool GPOPS-II. Trials are carried out on a test track, and the tested data are collected and processed, then the trajectory data in different corners are obtained. Different TLCs calculations are derived and applied to different track sections. After that, the human driver’s trajectories and the optimal line are compared to see the correlation using TLC methods. The results show that the optimal trajectory shows a similar trend with human’s trajectories to some extent when driving through a corner although it is not so perfectly aligned with the tested trajectories, which could conform with people’s driving intuition and improve the occupants’ comfort when driving in a corner. This could improve the acceptability of AVs in the automotive market in the future. The driver tends to move to the outside of the lane gradually after passing the apex when driving in corners on the road with hard-lines on both sides.


2021 ◽  
Vol 13 (3) ◽  
pp. 68
Author(s):  
Steven Knowles Flanagan ◽  
Zuoyin Tang ◽  
Jianhua He ◽  
Irfan Yusoff

Dedicated Short-Range Communication (DSRC) or IEEE 802.11p/OCB (Out of the Context of a Base-station) is widely considered to be a primary technology for Vehicle-to-Vehicle (V2V) communication, and it is aimed toward increasing the safety of users on the road by sharing information between one another. The requirements of DSRC are to maintain real-time communication with low latency and high reliability. In this paper, we investigate how communication can be used to improve stopping distance performance based on fieldwork results. In addition, we assess the impacts of reduced reliability, in terms of distance independent, distance dependent and density-based consecutive packet losses. A model is developed based on empirical measurements results depending on distance, data rate, and traveling speed. With this model, it is shown that cooperative V2V communications can effectively reduce reaction time and increase safety stop distance, and highlight the importance of high reliability. The obtained results can be further used for the design of cooperative V2V-based driving and safety applications.


2019 ◽  
Vol 9 (15) ◽  
pp. 3052
Author(s):  
Jiafu Yin ◽  
Dongmei Zhao

Due to the potential of thermal storage being similar to that of the conventional battery, air conditioning (AC) has gained great popularity for its potential to provide ancillary services and emergency reserves. In order to integrate numerous inverter ACs into secondary frequency control, a hierarchical distributed control framework which incorporates a virtual battery model of inverter AC is developed. A comprehensive derivation of a second-order virtual battery model has been strictly posed to formulate the frequency response characteristics of inverter AC. In the hierarchical control scheme, a modified control performance index is utilized to evaluate the available capacity of traditional regulation generators. A coordinated frequency control strategy is derived to exploit the complementary and advantageous characteristics of regulation generators and aggregated AC. A distributed consensus control strategy is developed to guarantee the fair participation of heterogeneous AC in frequency regulation. The finite-time consensus protocol is introduced to ensure the fast convergence of power tracking and the state-of-charge (SOC) consistency of numerous ACs. The effectiveness of the proposed control strategy is validated by a variety of illustrative examples.


Author(s):  
إسراء عصام بن موسى ◽  
عبدالسلام صالح الراشدي

Vehicular Ad-hoc Network (VANET) becomes one of the most popular modern technologies these days, due to its contribution to the development and modernization of Intelligent Transportation Systems (ITS). The primary goal of these networks is to provide safety and comfort for drivers and passengers in roads. There are many types of VANET that are used in ITS, in this paper, we particularly focus on the Vehicle to Vehicle communication (V2V), which each vehicle can exchange information to inform drivers of other vehicles about the current state of the road flow, in the event of any emergency to avoid accidents, and reduce congestion on roads. We proposed V2V using Wi-Fi (wireless fidelity); the reason of its unique characteristics that distinguish it from other types. There are many difficulties and the challenges in implementing most types of V2V, and the reason is due to the lack of devices and equipment needed for real implementation. To prove the possibility of applying this type in real life, we made a prototype contains a modified toy car, a 12-volt power supply, sensors, visual, audible alarm, a visual “LED” devices, and finally a 12-volt DC relay unit. As a conclusion, the proposed implementation in spite of minimal requirements and use simple equipment, we have achieved the most important main objectives of the paper: preventing vehicles from collision, early warning, and avoiding congestion on the roads.


Author(s):  
Mekelleche Fatiha ◽  
Haffaf Hafid

Vehicular Ad-Hoc Networks (VANETs), a new mobile ad-hoc network technology (MANET), are currently receiving increased attention from manufacturers and researchers. They consist of several mobile vehicles (intelligent vehicles) that can communicate with each other (inter-vehicle communication) or with fixed road equipment (vehicle-infrastructure communication) adopting new wireless communication technologies. The objective of these networks is to improve road safety by warning motorists of any event on the road (accidents, hazards, possible deviations, etc.), and make the time spent on the road more pleasant and less boring (applications deployed to ensure the comfort of the passengers). Practically, VANETs are designed to support the development of Intelligent Transportation Systems (ITS). The latter are seen as one of the technical solutions to transport challenges. This chapter, given the importance of road safety in the majority of developed countries, presents a comprehensive study on the VANET networks, highlighting their main features.


Author(s):  
Yalda Rahmati ◽  
Mohammadreza Khajeh Hosseini ◽  
Alireza Talebpour ◽  
Benjamin Swain ◽  
Christopher Nelson

Despite numerous studies on general human–robot interactions, in the context of transportation, automated vehicle (AV)–human driver interaction is not a well-studied subject. These vehicles have fundamentally different decision-making logic compared with human drivers and the driving interactions between AVs and humans can potentially change traffic flow dynamics. Accordingly, through an experimental study, this paper investigates whether there is a difference between human–human and human–AV interactions on the road. This study focuses on car-following behavior and conducted several car-following experiments utilizing Texas A&M University’s automated Chevy Bolt. Utilizing NGSIM US-101 dataset, two scenarios for a platoon of three vehicles were considered. For both scenarios, the leader of the platoon follows a series of speed profiles extracted from the NGSIM dataset. The second vehicle in the platoon can be either another human-driven vehicle (scenario A) or an AV (scenario B). Data is collected from the third vehicle in the platoon to characterize the changes in driving behavior when following an AV. A data-driven and a model-based approach were used to identify possible changes in driving behavior from scenario A to scenario B. The findings suggested there is a statistically significant difference between human drivers’ behavior in these two scenarios and human drivers felt more comfortable following the AV. Simulation results also revealed the importance of capturing these changes in human behavior in microscopic simulation models of mixed driving environments.


2015 ◽  
Vol 27 (6) ◽  
pp. 660-670 ◽  
Author(s):  
Udara Eshan Manawadu ◽  
◽  
Masaaki Ishikawa ◽  
Mitsuhiro Kamezaki ◽  
Shigeki Sugano ◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00270006/08.jpg"" width=""300"" /> Driving simulator</div>Intelligent passenger vehicles with autonomous capabilities will be commonplace on our roads in the near future. These vehicles will reshape the existing relationship between the driver and vehicle. Therefore, to create a new type of rewarding relationship, it is important to analyze when drivers prefer autonomous vehicles to manually-driven (conventional) vehicles. This paper documents a driving simulator-based study conducted to identify the preferences and individual driving experiences of novice and experienced drivers of autonomous and conventional vehicles under different traffic and road conditions. We first developed a simplified driving simulator that could connect to different driver-vehicle interfaces (DVI). We then created virtual environments consisting of scenarios and events that drivers encounter in real-world driving, and we implemented fully autonomous driving. We then conducted experiments to clarify how the autonomous driving experience differed for the two groups. The results showed that experienced drivers opt for conventional driving overall, mainly due to the flexibility and driving pleasure it offers, while novices tend to prefer autonomous driving due to its inherent ease and safety. A further analysis indicated that drivers preferred to use both autonomous and conventional driving methods interchangeably, depending on the road and traffic conditions.


2014 ◽  
Vol 556-562 ◽  
pp. 1220-1225
Author(s):  
Yan He Zhu ◽  
Lan Ming Guo ◽  
Jie Zhao

The most critical issue of the blanket module remote maintenance operation is to remove or replace the heavy module with high positioning accuracy of 1mm. Located in vacuum vessel (VV) of the nuclear fusion device, the blanket module is weight up to 500kg, thus the grasp and installation of blanket module come to be the essential problem during the maintenance operation. To meet the requirement, we propose a new hierarchical control strategy of rough and fine positioning technology based on combined sensors. The detail procedures and implementation of the control scheme has been carried out successfully on Virtual Robot Experiment Platform to demonstrate the feasibility of the control strategy.


Author(s):  
Yiqi Gao ◽  
Theresa Lin ◽  
Francesco Borrelli ◽  
Eric Tseng ◽  
Davor Hrovat

Two frameworks based on Model Predictive Control (MPC) for obstacle avoidance with autonomous vehicles are presented. A given trajectory represents the driver intent. An MPC has to safely avoid obstacles on the road while trying to track the desired trajectory by controlling front steering angle and differential braking. We present two different approaches to this problem. The first approach solves a single nonlinear MPC problem. The second approach uses a hierarchical scheme. At the high-level, a trajectory is computed on-line, in a receding horizon fashion, based on a simplified point-mass vehicle model in order to avoid an obstacle. At the low-level an MPC controller computes the vehicle inputs in order to best follow the high level trajectory based on a nonlinear vehicle model. This article presents the design and comparison of both approaches, the method for implementing them, and successful experimental results on icy roads.


2021 ◽  
Vol 11 (17) ◽  
pp. 7984
Author(s):  
Prabu Subramani ◽  
Khalid Nazim Abdul Sattar ◽  
Rocío Pérez de Prado ◽  
Balasubramanian Girirajan ◽  
Marcin Wozniak

Connected autonomous vehicles (CAVs) currently promise cooperation between vehicles, providing abundant and real-time information through wireless communication technologies. In this paper, a two-level fusion of classifiers (TLFC) approach is proposed by using deep learning classifiers to perform accurate road detection (RD). The proposed TLFC-RD approach improves the classification by considering four key strategies such as cross fold operation at input and pre-processing using superpixel generation, adequate features, multi-classifier feature fusion and a deep learning classifier. Specifically, the road is classified as drivable and non-drivable areas by designing the TLFC using the deep learning classifiers, and the detected information using the TLFC-RD is exchanged between the autonomous vehicles for the ease of driving on the road. The TLFC-RD is analyzed in terms of its accuracy, sensitivity or recall, specificity, precision, F1-measure and max F measure. The TLFC- RD method is also evaluated compared to three existing methods: U-Net with the Domain Adaptation Model (DAM), Two-Scale Fully Convolutional Network (TFCN) and a cooperative machine learning approach (i.e., TAAUWN). Experimental results show that the accuracy of the TLFC-RD method for the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset is 99.12% higher than its competitors.


Sign in / Sign up

Export Citation Format

Share Document