scholarly journals Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abass Alavi ◽  
Thomas J. Werner ◽  
Ewa Ł. Stępień ◽  
Pawel Moskal

Abstract Positron emission tomography (PET) imaging is the most quantitative modality for assessing disease activity at the molecular and cellular levels, and therefore, it allows monitoring its course and determining the efficacy of various therapeutic interventions. In this scientific communication, we describe the unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. We emphasize the critical importance of the development and synthesis of novel radiotracers (starting from the enormous impact of F-Fluorodeouxyglucose (FDG) introduced by investigators at the University of Pennsylvania (PENN)) and PET instrumentation. These innovations have led to the total-body PET systems enabling dynamic and parametric molecular imaging of all organs in the body simultaneously. We also present our perspectives for future development of molecular imaging by multiphoton PET systems that will enable users to extract substantial information (owing to the evolving role of positronium imaging) about the related molecular and biological bases of various disorders, which are unachievable by the current PET imaging techniques.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Krishna Kanta Ghosh ◽  
Parasuraman Padmanabhan ◽  
Chang-Tong Yang ◽  
Sachin Mishra ◽  
Christer Halldin ◽  
...  

Abstract Positron emission tomography (PET) offers the study of biochemical, physiological, and pharmacological functions at a cellular and molecular level. The performance of a PET study mostly depends on the used radiotracer of interest. However, the development of a novel PET tracer is very difficult, as it is required to fulfill a lot of important criteria. PET radiotracers usually encounter different chemical modifications including redox reaction, hydrolysis, decarboxylation, and various conjugation processes within living organisms. Due to this biotransformation, different chemical entities are produced, and the amount of the parent radiotracer is declined. Consequently, the signal measured by the PET scanner indicates the entire amount of radioactivity deposited in the tissue; however, it does not offer any indication about the chemical disposition of the parent radiotracer itself. From a radiopharmaceutical perspective, it is necessary to quantify the parent radiotracer’s fraction present in the tissue. Hence, the identification of radiometabolites of the radiotracers is vital for PET imaging. There are mainly two reasons for the chemical identification of PET radiometabolites: firstly, to determine the amount of parent radiotracers in plasma, and secondly, to rule out (if a radiometabolite enters the brain) or correct any radiometabolite accumulation in peripheral tissue. Besides, radiometabolite formations of the tracer might be of concern for the PET study, as the radiometabolic products may display considerably contrasting distribution patterns inside the body when compared with the radiotracer itself. Therefore, necessary information is needed about these biochemical transformations to understand the distribution of radioactivity throughout the body. Various published review articles on PET radiometabolites mainly focus on the sample preparation techniques and recently available technology to improve the radiometabolite analysis process. This article essentially summarizes the chemical and structural identity of the radiometabolites of various radiotracers including [11C]PBB3, [11C]flumazenil, [18F]FEPE2I, [11C]PBR28, [11C]MADAM, and (+)[18F]flubatine. Besides, the importance of radiometabolite analysis in PET imaging is also briefly summarized. Moreover, this review also highlights how a slight chemical modification could reduce the formation of radiometabolites, which could interfere with the results of PET imaging. Graphical abstract


2021 ◽  
Vol 22 (14) ◽  
pp. 7348
Author(s):  
Olivia Wegrzyniak ◽  
Maria Rosestedt ◽  
Olof Eriksson

Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik H. J. G. Aarntzen ◽  
Edel Noriega-Álvarez ◽  
Vera Artiko ◽  
André H. Dias ◽  
Olivier Gheysens ◽  
...  

AbstractInflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings.


2019 ◽  
pp. 141-160
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


2020 ◽  
Vol 117 (5) ◽  
pp. 2265-2267 ◽  
Author(s):  
Xuezhu Zhang ◽  
Simon R. Cherry ◽  
Zhaoheng Xie ◽  
Hongcheng Shi ◽  
Ramsey D. Badawi ◽  
...  

A 194-cm-long total-body positron emission tomography/computed tomography (PET/CT) scanner (uEXPLORER), has been constructed to offer a transformative platform for human radiotracer imaging in clinical research and healthcare. Its total-body coverage and exceptional sensitivity provide opportunities for innovative studies of physiology, biochemistry, and pharmacology. The objective of this study is to develop a method to perform ultrahigh (100 ms) temporal resolution dynamic PET imaging by combining advanced dynamic image reconstruction paradigms with the uEXPLORER scanner. We aim to capture the fast dynamics of initial radiotracer distribution, as well as cardiac motion, in the human body. The results show that we can visualize radiotracer transport in the body on timescales of 100 ms and obtain motion-frozen images with superior image quality compared to conventional methods. The proposed method has applications in studying fast tracer dynamics, such as blood flow and the dynamic response to neural modulation, as well as performing real-time motion tracking (e.g., cardiac and respiratory motion, and gross body motion) without any external monitoring device (e.g., electrocardiogram, breathing belt, or optical trackers).


2020 ◽  
Vol 9 (11) ◽  
pp. 3679
Author(s):  
Anna Yordanova ◽  
Hans-Jürgen Biersack ◽  
Hojjat Ahmadzadehfar

Neuroendocrine neoplasms make up a heterogeneous group of tumors with inter-patient and intra-patient variabilities. Molecular imaging can help to identify and characterize neuroendocrine tumors (NETs). Furthermore, imaging and treatment with novel theranostics agents offers a new, tailored approach to managing NETs. Recent advances in the management of NETs aim to enhance the effectiveness of targeted treatment with either modifications of known substances or the development of new substances with better targeting features. There have been several attempts to increase the detectability of NET lesions via positron emission tomography (PET) imaging and improvements in pretreatment planning using dosimetry. Especially notable is PET imaging with the radionuclide Copper-64. Increasing interest is also being paid to theranostics of grade 3 and purely differentiated NETs, for example, via targeting of the C-X-C motif chemokine receptor 4 (CXCR4). The aim of this review is to summarize the most relevant recent studies, which present promising new agents in molecular imaging and therapy for NETs, novel combination therapies and new applications of existing molecular imaging modalities in nuclear medicine.


2012 ◽  
Vol 1 (1) ◽  
pp. 59-76 ◽  
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


Author(s):  
Benjamin P. Burke ◽  
Christopher Cawthorne ◽  
Stephen J. Archibald

Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5–10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


2007 ◽  
Vol 50 (3) ◽  
pp. 445-459 ◽  
Author(s):  
Leonard I. Wiebe

Positron emission tomography (PET) is a non-invasive nuclear imaging technique. In PET, radiolabelled molecules decay by positron emission. The gamma rays resulting from positron annihilation are detected in coincidence and mapped to produce three dimensional images of radiotracer distribution in the body. Molecular imaging with PET refers to the use of positron-emitting biomolecules that are highly specific substrates for target enzymes, transport proteins or receptor proteins. Molecular imaging with PET produces spatial and temporal maps of the target-related processes. Molecular imaging is an important analytical tool in diagnostic medical imaging, therapy monitoring and the development of new drugs. Molecular imaging has its roots in molecular biology. Originally, molecular biology meant the biology of gene expression, but now molecular biology broadly encompasses the macromolecular biology and biochemistry of proteins, complex carbohydrates and nucleic acids. To date, molecular imaging has focused primarily on proteins, with emphasis on monoclonal antibodies and their derivative forms, small-molecule enzyme substrates and components of cell membranes, including transporters and transmembrane signalling elements. This overview provides an introduction to nucleosides, nucleotides and nucleic acids in the context of molecular imaging.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Iván Peñuelas ◽  
Inés Domínguez-Prado ◽  
María J. García-Velloso ◽  
Josep M. Martí-Climent ◽  
Macarena Rodríguez-Fraile ◽  
...  

Molecular imaging of breast cancer has undoubtedly permitted a substantial development of the overall diagnostic accuracy of this malignancy in the last years. Accurate tumour staging, design of individually suited therapies, response evaluation, early detection of recurrence and distant lesions have also evolved in parallel with the development of novel molecular imaging approaches. In this context, positron emission tomography (PET) can be probably seen as the most interesting molecular imaging technology with straightforward clinical application for such purposes. Dozens of radiotracers for PET imaging of breast cancer have been tested in laboratory animals. However, in this review we shall focus mainly in the smaller group of PET radiopharmaceuticals that have lead through into the clinical setting. PET imaging can be used to target general metabolic phenomena related to tumoural transformation, including glucose metabolism and cell proliferation, but can also be directed to specific hormone receptors that are characteristic of the breast cancer cell. Many other receptors and transport molecules present in the tumour cells could also be of interest for imaging. Furthermore, molecules related with the tumour microenvironment, tumour induced angiogenesis or even hypoxia could also be used as molecular biomarkers for breast cancer imaging.


Sign in / Sign up

Export Citation Format

Share Document