scholarly journals Transparent Restrictions on Beliefs and Forward-Induction Reasoning in Games with Asymmetric Information

2013 ◽  
Vol 13 (1) ◽  
pp. 79-130 ◽  
Author(s):  
Pierpaolo Battigalli ◽  
Andrea Prestipino

Abstract: We analyze forward-induction reasoning in games with asymmetric information assuming some commonly understood restrictions on beliefs. Specifically, we assume that some given restrictions Δ on players’ initial or conditional first-order beliefs are transparent, that is, not only do the restrictions Δ hold but there is also common belief in Δ at every node. Most applied models of asymmetric information are covered as special cases whereby Δ pins down the probabilities initially assigned to states of nature. But the abstract analysis also allows for transparent restrictions on beliefs about behavior, e.g. independence restrictions or restrictions induced by the context behind the game. Our contribution is twofold. First, we use dynamic interactive epistemology to formalize assumptions that capture foward-induction reasoning given the transparency of Δ, and show that the behavioral implications of these assumptions are characterized by the Δ-rationalizability solution procedure of Battigalli (1999, 2003). Second, we study the differences and similarities between this solution concept and a simpler solution procedure put forward by Battigalli and Siniscalchi (2003). We show that the two procedures are equivalent if Δ is “closed under compositions” a property that holds in all the applications considered by Battigalli and Siniscalchi (2003). We also show that when Δ is not closed under compositions, the simpler solution procedure of Battigalli and Siniscalchi (2003) may fail to characterize the behavioral implications of forward-induction reasoning.

2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


Author(s):  
Satyajit Ambike ◽  
James P. Schmiedeler ◽  
Michael M. Stanisˇic´

Path tracking can be accomplished by separating the control of the desired trajectory geometry and the control of the path variable. Existing methods accomplish tracking of up to third-order geometric properties of planar paths and up to second-order properties of spatial paths using non-redundant manipulators, but only in special cases. This paper presents a novel methodology that enables the geometric tracking of a desired planar or spatial path to any order with any non-redundant regional manipulator. The governing first-order coordination equation for a spatial path-tracking problem is developed, the repeated differentiation of which generates the coordination equation of the desired order. In contrast to previous work, the equations are developed in a fixed global frame rather than a configuration-dependent canonical frame, providing a significant practical advantage. The equations are shown to be linear, and therefore, computationally efficient. As an example, the results are applied to a spatial 3-revolute mechanism that tracks a spatial path. Spatial, rigid-body guidance is achieved by applying the technique to three points on the end-effector of a six degree-of-freedom robot. A spatial 6-revolute robot is used as an illustration.


2014 ◽  
Vol 30 (3) ◽  
pp. 331-364 ◽  
Author(s):  
Andrés Perea

In this paper we explore game-theoretic reasoning in dynamic games within the framework of belief revision theory. More precisely, we focus on the forward induction concept of ‘common strong belief in rationality’ (Battigalli and Siniscalchi (2002) and the backward induction concept of ‘common belief in future rationality’ (Baltag et al. 2009; Perea 2014). For both concepts we investigate whether the entire collection of selected belief revision policies for a player can be characterized by a unique plausibility ordering. We find that this is indeed possible for ‘common strong belief in rationality’, whereas this may be impossible in some games for ‘common belief in future rationality’.


Author(s):  
Daniel Canarutto

By exploiting the previously exposed results in 2-spinor geometry, a general description of fields of arbitrary spin is exposed and shown to admit a first-order Lagrangian which extends the theory of Dirac spinors. The needed bundle is the fibered direct product of a symmetric ‘main sector’—carrying an irreducible representation of the angular-momentum algebra—and an induced sequence of ‘ghost sectors’. Several special cases are considered; in particular, one recovers the Bargmann-Wigner and Joos-Weinberg equations.


2018 ◽  
Vol 51 (1) ◽  
pp. 198-210 ◽  
Author(s):  
Douglas R. Anderson ◽  
Masakazu Onitsuka

Abstract We establish theHyers-Ulam stability (HUS) of certain first-order linear constant coefficient dynamic equations on time scales, which include the continuous (step size zero) and the discrete (step size constant and nonzero) dynamic equations as important special cases. In particular, for certain parameter values in relation to the graininess of the time scale, we find the minimum HUS constants. A few nontrivial examples are provided. Moreover, an application to a perturbed linear dynamic equation is also included.


2020 ◽  
Vol 9 (1) ◽  
pp. 156-168
Author(s):  
Seyed Mahdi Mousavi ◽  
Saeed Dinarvand ◽  
Mohammad Eftekhari Yazdi

AbstractThe unsteady convective boundary layer flow of a nanofluid along a permeable shrinking/stretching plate under suction and second-order slip effects has been developed. Buongiorno’s two-component nonhomogeneous equilibrium model is implemented to take the effects of Brownian motion and thermophoresis into consideration. It can be emphasized that, our two-phase nanofluid model along with slip concentration at the wall shows better physical aspects relative to taking the constant volume concentration at the wall. The similarity transformation method (STM), allows us to reducing nonlinear governing PDEs to nonlinear dimensionless ODEs, before being solved numerically by employing the Keller-box method (KBM). The graphical results portray the effects of model parameters on boundary layer behavior. Moreover, results validation has been demonstrated as the skin friction and the reduced Nusselt number. We understand shrinking plate case is a key factor affecting non-uniqueness of the solutions and the range of the shrinking parameter for which the solution exists, increases with the first order slip parameter, the absolute value of the second order slip parameter as well as the transpiration rate parameter. Besides, the second-order slip at the interface decreases the rate of heat transfer in a nanofluid. Finally, the analysis for no-slip and first-order slip boundary conditions can also be retrieved as special cases of the present model.


1939 ◽  
Vol 4 (1) ◽  
pp. 1-9 ◽  
Author(s):  
László Kalmár

1. Although the decision problem of the first order predicate calculus has been proved by Church to be unsolvable by any (general) recursive process, perhaps it is not superfluous to investigate the possible reductions of the general problem to simple special cases of it. Indeed, the situation after Church's discovery seems to be analogous to that in algebra after the Ruffini-Abel theorem; and investigations on the reduction of the decision problem might prepare the way for a theory in logic, analogous to that of Galois.It has been proved by Ackermann that any first order formula is equivalent to another having a prefix of the form(1) (Ex1)(x2)(Ex3)(x4)…(xm).On the other hand, I have proved that any first order formula is equivalent to some first order formula containing a single, binary, predicate variable. In the present paper, I shall show that both results can be combined; more explicitly, I shall prove theTheorem. To any given first order formula it is possible to construct an equivalent one with a prefix of the form (1) and a matrix containing no other predicate variable than a single binary one.2. Of course, this theorem cannot be proved by a mere application of the Ackermann reduction method and mine, one after the other. Indeed, Ackermann's method requires the introduction of three auxiliary predicate variables, two of them being ternary variables; on the other hand, my reduction process leads to a more complicated prefix, viz.,(2) (Ex1)…(Exm)(xm+1)(xm+2)(Exm+3)(Exm+4).


1969 ◽  
Vol 20 (2) ◽  
pp. 178-190 ◽  
Author(s):  
W. Carnegie ◽  
B. Dawson

SummaryTheoretical and experimental natural frequencies and modal shapes up to the fifth mode of vibration are given for a straight blade of asymmetrical aerofoil cross-section. The theoretical procedure consists essentially of transforming the differential equations of motion into a set of simultaneous first-order equations and solving them by a step-by-step finite difference procedure. The natural frequency values are compared with results obtained by an analytical solution and with standard solutions for certain special cases. Good agreement is shown to exist between the theoretical results for the various methods presented. The equations of motion are dependent upon the coordinates of the axis of the centre of flexure of the beam relative to the centroidal axis. The effect of variations of the centre of flexure coordinates upon the frequencies and modal shapes is shown for a limited range of coordinate values. Comparison is made between the theoretical natural frequencies and modal shapes and corresponding results obtained by experiment.


Author(s):  
E. Zhang ◽  
L. Noakes

Motivated by registration problems, this paper deals with a curve matching problem in homogeneous spaces. Let G be a connected finite-dimensional bi-invariant Lie group and K a closed subgroup. A smooth curve g in G is said to be admissible if it can transform two smooth curves f 1 and f 2 in G / K from one to the other. An ( f 1 , f 2 )- relative geodesic (Holm et al. 2013 Proc. R. Soc. A 469 , 20130297. ( doi:10.1098/rspa.2013.0297 )) is defined as a critical point of the total energy E ( g ) as g varies in the set of all ( f 1 , f 2 )-admissible curves. We obtain the Euler–Lagrange equation, a first-order differential equation, satisfied by a relative geodesic. Furthermore, the Euler–Lagrange equation is simplified for the case where G / K is globally symmetric. As a concrete example, relative geodesics are found for special cases where G is SO(3) and K is SO(2). As an application of discrepancy for curves in S 2 , we construct and study a new measure of non-congruency for constant speed curves in Euclidean 3-space. Numerical examples are given to illustrate results.


An approximate solution is presented for the fourth moment equation that describes fluctuations of intensity in a wave propagating through a randomly fluctuating medium. The solution is valid for high frequency or relatively strong fluctuations in the medium. The solution procedure is straightforward and at zero order agrees with previously derived approximate solutions. However, the present method is much more direct and more easily extended to complicated problems. Indeed, the first order correction to this basic solution is also determined and it is found that significantly better agreement with previous numerical work is obtained. In addition, knowledge of the correction term allows approximate estimates to be made for the error involved in using the basic solution.


Sign in / Sign up

Export Citation Format

Share Document