scholarly journals Effects of replacing the nasal cavity with a simple pipe like structure in CFD simulations of the airflow within the upper airways of OSA patients with patient individual flow rates

2017 ◽  
Vol 3 (2) ◽  
pp. 795-798
Author(s):  
Christina Hagen ◽  
Pragathi Gurumurthy ◽  
Thorsten M. Buzug

AbstractOSA is characterized by repetitive collapses of the upper airways during sleep. Computational fluid dynamics can be used to investigate the abnormal pressure distribution in the patient’s airways. The computational costs and model reconstruction effort can be reduced by focusing the simulations on the pharynx and replacing the nasal cavity by a simple pipe structure. In this work, the effects of the mentioned replacement on the simulated flow are evaluated. Airflow simulations using the k-ω turbulence model are performed in the anatomically correct airway of a patient having a high difference in the inspiratory volume flow rates of both nostrils, as well as in a model with replaced nasal cavity by a simple pipe structure. The simulated pressure distributions of both models are in very good agreement indicating the acceptability of replacing the nasal cavity by simple pipe structures in in-silico airflow analyses of OSA patients.

Author(s):  
Sayavur I. Bakhtiyarov ◽  
Ruel A. Overfelt

The results of an experimental study and 3D numerical simulations of resin bonded sand/air flow in a square corebox with an H-shape insertion and passage between upper and lower pockets of the pattern are presented. A computer controlled electronic system was designed and built to measure pressures and flow rates inside the corebox during mold filling, gassing and purging cycles of Phenolic Urethane Amine (PUA) process. Contour maps of the pressure distributions inside the corebox were created based on barometric measurements. A good agreement between experimental results and numerical simulations was found.


Author(s):  
Sayavur I. Bakhtiyarov ◽  
Ruel A. Overfelt

The results of an experimental study and 3D numerical simulations of resin bonded sand/air flow in a square corebox with an H-shape insertion and passage between upper and lower pockets of the pattern are presented. A computer controlled electronic system was designed and built to measure pressures and flow rates inside the corebox during mold filling, gassing and purging cycles of Phenolic Urethane Amine (PUA) process. Contour maps of the pressure distributions inside the corebox were created based on barometric measurements. A good agreement between experimental results and numerical simulations was found.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042199324
Author(s):  
Daniel Adu ◽  
Jianguo Du ◽  
Ransford O Darko ◽  
Eric Ofosu Antwi ◽  
Muhammad Aamir Shafique Khan

Several rivers and streams are available in Africa and Asian regions with great potentials not applicable for constructing large hydropower dams but feasible for small and mini hydro generation. This study strive for investigating the impact of splitter blade on pump as turbine performance considering different speed and flow rates. Two specific centrifugal pump models one with six blades without splitter and another with four blades and four splitters were used for the study. The inlet diameter and outlet diameters of both impellers were 104 mm/116 mm, and 160 mm respectively at a designed flow rate Q = 12.5 m3/h, head H = 16 m, rotational speed n = 1450 rpm and efficiency of 56%, outlet impeller width of 0.006 m, a blade outlet angle of 30° was used for the study. CFD simulations were conducted with the use of k-ε turbulence model. The influence of splitter blade position on the performance of pump as turbine in the selected specific pumps with and without splitter blades has been investigated both experimentally and numerically at three different flow rates and rotational speed. The simulated data were in good agreement with the experimental results, the maximum deviation error between the CFD and test for each model are 5.6%, 2.6%, for the head and efficiency; 7.5% and 3.6% at different flow conditions.


1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


2014 ◽  
Vol 622-623 ◽  
pp. 659-663 ◽  
Author(s):  
Fabio Bassan ◽  
Paolo Ferro ◽  
Franco Bonollo

In this work, the formation mechanisms of surface defects in multistage cold forging of axisymmetrical parts have been studied through FEM simulations. As case history, the industrial production of an heating pipe fitting by cold forging has been analyzed. Based on simulated flow behaviour of material, several types of surface defects are identified and attributed to plastic instability of the work-material, inappropriate axial/radial flow ratio, excessive forming-pressure and uncorrect tooling design. The results of the FE model are finally compared with those obtained from real forging process and good agreement is observed.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


2008 ◽  
Vol 105 (6) ◽  
pp. 1733-1740 ◽  
Author(s):  
Santhosh T. Jayaraju ◽  
Manuel Paiva ◽  
Mark Brouns ◽  
Chris Lacor ◽  
Sylvia Verbanck

We investigated the axial dispersive effect of the upper airway structure (comprising mouth cavity, oropharynx, and trachea) on a traversing aerosol bolus. This was done by means of aerosol bolus experiments on a hollow cast of a realistic upper airway model (UAM) and three-dimensional computational fluid dynamics (CFD) simulations in the same UAM geometry. The experiments showed that 50-ml boluses injected into the UAM dispersed to boluses with a half-width ranging from 80 to 90 ml at the UAM exit, across both flow rates (250, 500 ml/s) and both flow directions (inspiration, expiration). These experimental results imply that the net half-width induced by the UAM typically was 69 ml. Comparison of experimental bolus traces with a one-dimensional Gaussian-derived analytical solution resulted in an axial dispersion coefficient of 200–250 cm2/s, depending on whether the bolus peak and its half-width or the bolus tail needed to be fully accounted for. CFD simulations agreed well with experimental results for inspiratory boluses and were compatible with an axial dispersion of 200 cm2/s. However, for expiratory boluses the CFD simulations showed a very tight bolus peak followed by an elongated tail, in sharp contrast to the expiratory bolus experiments. This indicates that CFD methods that are widely used to predict the fate of aerosols in the human upper airway, where flow is transitional, need to be critically assessed, possibly via aerosol bolus simulations. We conclude that, with all its geometric complexity, the upper airway introduces a relatively mild dispersion on a traversing aerosol bolus for normal breathing flow rates in inspiratory and expiratory flow directions.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yunfei Ma ◽  
Jiahuan Cui ◽  
Nagabhushana Rao Vadlamani ◽  
Paul Tucker

Inlet distortion often occurs under off-design conditions when a flow separates within an intake and this unsteady phenomenon can seriously impact fan performance. Fan–distortion interaction is a highly unsteady aerodynamic process into which high-fidelity simulations can provide detailed insights. However, due to limitations on the computational resource, the use of an eddy resolving method for a fully resolved fan calculation is currently infeasible within industry. To solve this problem, a mixed-fidelity computational fluid dynamics method is proposed. This method uses the large Eddy simulation (LES) approach to resolve the turbulence associated with separation and the immersed boundary method (IBM) with smeared geometry (IBMSG) to model the fan. The method is validated by providing comparisons against the experiment on the Darmstadt Rotor, which shows a good agreement in terms of total pressure distributions. A detailed investigation is then conducted for a subsonic rotor with an annular beam-generating inlet distortion. A number of studies are performed in order to investigate the fan's influence on the distortions. A comparison to the case without a fan shows that the fan has a significant effect in reducing distortions. Three fan locations are examined which reveal that the fan nearer to the inlet tends to have a higher pressure recovery. Three beams with different heights are also tested to generate various degrees of distortion. The results indicate that the fan can suppress the distortions and that the recovery effect is proportional to the degree of inlet distortion.


2001 ◽  
Author(s):  
Hooman Rezaei ◽  
Abraham Engeda ◽  
Paul Haley

Abstract The objective of this work was to perform numerical analysis of the flow inside a modified single stage CVHF 1280 Trane centrifugal compressor’s vaneless diffuser and volute. Gambit was utilized to read the casing geometry and generating the vaneless diffuser. An unstructured mesh was generated for the path from vaneless diffuser inlet to conic diffuser outlet. At the same time a meanline analysis was performed corresponding to speeds and mass flow rates of the experimental data in order to obtain the absolute velocity and flow angle leaving the impeller for those operating conditions. These values and experimental data were used as inlet and outlet boundary conditions for the simulations. Simulations were performed in Fluent 5.0 for three speeds of 2000, 3000 and 3497 RPM and mass flow rates of minimum, medium and maximum. Results are in good agreement with the experimental ones and present the flow structures inside the vaneless diffuser and volute.


Sign in / Sign up

Export Citation Format

Share Document