Correlations for mixing energy in processes using Rushton turbine mixer‡

2016 ◽  
Vol 70 (6) ◽  
Author(s):  
Grzegorz Story ◽  
Marian Kordas ◽  
Rafał Rakoczy

AbstractThis study reports the research results on a mixing process using a stirred tank mixer under the action of a rotating magnetic field (RMF). Dimensionless correlations are proposed to predict the power consumption and mixing time for the mixing systems analysed. The results suggest that the mixing behaviour of the experimental set-ups tested may be assessed using the dimensionless mixing energy as the product of the power input and mixing time. In addition, an innovative strategy is proposed on the basis of the synergistic effect of the rotational Rushton turbine and the RMF generator. The values of the dimensionless energy thus obtained were used to compare the mixing process performed by the mixing devices tested. It is shown that the mixing process under the RMF action has significantly higher values of energy consumption than the conventional Rushton turbine. The total energy consumption for the mixing process performed by the RMF mixer may be reduced by concomitant use of a rotational agitator.

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1311 ◽  
Author(s):  
Marian Kordas ◽  
Maciej Konopacki ◽  
Bartłomiej Grygorcewicz ◽  
Adrian Augustyniak ◽  
Daniel Musik ◽  
...  

Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied during bioprocesses conducted in bioreactors. Establishing optimum hydrodynamics conditions for the realized process with microorganisms maximizes the yield of desired products. Therefore, our main objective was to analyze and define the main operational hydrodynamic parameters (including flow field, power consumption, mixing time, and mixing energy) and mass transfer process (in this case, gas–liquid transfer) of two different commercial bioreactors (BioFlo® 115 and BioFlo® 415). The obtained results are allowed using mathematical relationships to describe the analyzed processes that can be used to predict the mixing process and mass transfer ratio in BioFlo® bioreactors. The proposed correlations may be applied for the design of a scaled-up or scaled-down bioreactors.


2020 ◽  
Vol 10 (16) ◽  
pp. 5597
Author(s):  
Angus Shiue ◽  
Shih-Chieh Chen ◽  
Jyh-Cheng Jeng ◽  
Likuan Zhu ◽  
Graham Leggett

This study investigated the efficacy of a novel correlation of power input, energy dissipation rate and mixing time as a potential route to identify the orbitally shaken bioreactor (OSB) system. The Buckingham’s π-theorem was used to designate and transform dimensionless Newton numbers with five relevant power input variables. These variables were empirically varied to evaluate the correlation among the dimensionless numbers. The Newton number decreases with the increased shaking frequency and filling volume. Previous work has focused on optimizing the mixing process by evaluating different shaking and agitation mixing methods. We establish a new mixing process and assessable measurement of the mixing time in the OSB. An innovative explanation of mixing time for the thermal method is proposed. The optimal mixing time is independent of the temperature of filled liquid. The dimensionless mixing number remained constant in the turbulent regime and increasing with the increased liquid viscosity and filling volume. Our findings revealed that the observed correlation is a practical tool to figure the power consumption and mixing efficiency as cell cultivation in all OSB scales and is fully validated when scaling–up system.


2017 ◽  
Vol 139 ◽  
pp. 810-816 ◽  
Author(s):  
Hai-Thong Ngo ◽  
Abdelhak Kaci ◽  
El-Hadj Kadri ◽  
Tien-Tung Ngo ◽  
Alain Trudel ◽  
...  

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


Sign in / Sign up

Export Citation Format

Share Document