scholarly journals Tribological characteristics of polymer materials used for slide bearings

2021 ◽  
Vol 11 (1) ◽  
pp. 624-629
Author(s):  
Mariusz Walczak ◽  
Jacek Caban

Abstract The automotive industry uses a variety of technologies and construction materials in production process. Knowledge of the characteristics of tribological material pairs cooperating with each other is useful for their selection from the safety point of view sliding pairs, in means of transport, and other machines. The aim of the contribution is the analysis of the characteristics of tribological ball-on-disc wear of polymeric materials used as sliding bearings. Tribological tests were carried out under dry friction for a polymer–metal pair of three types of materials. Among all three groups of the tested materials statistically significant differences (p < 0.05 in Student’s t-test) in wear were observed. The wear rate and friction coefficient of the sample were tested, and the signs of wear were submitted to SEM observations.

2017 ◽  
Vol 21 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Mariusz Walczak ◽  
Jacek Caban ◽  
Andrzej Marczuk

Abstract The continuous technological development requires the use of modern materials also in agricultural engineering. Knowledge of the characteristics of tribological materials pairs cooperating with each other is useful for developing sliding nodes of agricultural machinery. Tribological properties of materials should be assessed for selection of technological materials beyond the economic criterion. The article presents analysis of the characteristics of tribological ball-on-disc wear of polymeric materials used as sliding elements for farm machines. Tribological tests were carried out under dry friction for a polymer-metal pair, and a wear rate and friction coefficient of the sample; the signs of wear were submitted to SEM observations.


Author(s):  
I. Yagrushkina ◽  
M. Dyul'dina ◽  
A. Nogachev ◽  
K. Yakunin

Polymer and composite materials are becoming more and more widely used in the Russian automotive industry. The Russian market of polymer materials for automotive components is characterized by an insufficiently developed production of some types of such materials. And, as a result, the use of imported materials. Styrene plastics are one of the innovative materials for the automotive industry. Using them in a car makes the product more attractive to customers. The use of this type of plastics allows to create a new look for the car. This applies to both the interior and exterior. The aim of this work is to develop the composition of a polymer composition based on ABS plastic from domestic raw materials. In addition, the new mixed composition should replace imported mixed compositions or contain a minimum amount of imported components of the composition, which will significantly reduce the cost of products and accordingly the car. The article analyzes the polymer materials used in the automotive industry. The disadvantages of using these materials in their pure form are revealed. The selection of the components of the composition of the impact-resistant material with the development of its formulation has been made. The composition of an impact-resistant polymer composition based on ABS plastic and PC has been developed, which is not inferior in terms of the complex of properties to the imported material. The influence of the composition of ABS-plastic, various grades of polycarbonate, their ratio in the polymer composite material on the physical, mechanical and technological properties of the obtained composition has been investigated. It is shown that the best set of properties is possessed by a material based on 2020-30 ABS-plastic and PC-3S polycarbonate with a component ratio of 70%:30%.


2020 ◽  
Vol 57 (1) ◽  
pp. 263-271
Author(s):  
Andrei Mihai Baciu ◽  
Imre Kiss ◽  
Ilare Bordeasu ◽  
lavinia Madalina Micu

Woven fiber reinforced concrete is a material, which contains various quantities of polymer materials in composition, in addition to the conventional components of an ordinary concrete (mineral binder - cement, aggregates, water and additives). The present work refers to the concrete in which the reinforcement is made of polymeric materials (polyethylene terephthalate), originated from the recycling programs of PET-type packaging. The experimental program was aimed at constructing some samples of woven fiber reinforced concrete from recycled material coming from PET packaging wastes, their testing to the compression demands and the comparison of results with the characteristics of the standardized samples of concrete (class C30/37). Based on a sufficient number of determinations, certain correlations can be established between the compressive strength of the concrete at 28 days depending on the dosage of components (aggregate, binder, and reinforcement), water / cement ratio, reinforcement volume, etc., essential parameters from a compositional point of view. These correlations, customized by cement type and strength class, are very important to determine - with approximation - to what dosage of components (aggregate, binder, reinforcement) the respective level of compressive strength of concrete is obtained.


2021 ◽  
Vol 410 ◽  
pp. 668-673
Author(s):  
Vyacheslav V. Barakhtenko ◽  
Tatiana H. Sahabutdinova ◽  
Yury V. Novikov

The article is devoted to research in the development of composite materials based on polyvinyl chloride and industrial waste from the metallurgical, energy and mining industries. The properties of dispersed waste have been studied, which make it possible to speak of the possibility of their use as fillers for polymer compositions. A comparative analysis of the tested physical and mechanical properties is carried out, depending on the characteristics of the particle size of the fillers. It was revealed that from the point of view of construction materials, all the wastes under study can be used as fillers. The development will make it possible to dispose of industrial waste to obtain useful products and save natural non-metallic materials used in the creation of composites.


2020 ◽  
Vol 128 ◽  
pp. 81-88 ◽  
Author(s):  
Paweł Kowalik ◽  
Mariusz Fabijański

The purpose of this study is to present the requirements, methodology, and results of research on the impact of biodegradable oil on plastic components used in the construction of a railway turnout. Briefly discussed are what railroad turnouts are, how they work, and what problems occur with substances used for their lubrication. They have an impact on the mechanical properties and durability of products made of polymeric materials. These types of materials absorb various kinds of chemicals, to a greater or lesser degree, and this affects their properties. For the tests, we used a universal lubrication oil with biodegradable properties, which is its most significant advantage. However, it may not cause deterioration of the turnout operation and change the properties of materials used for its construction. These types of oils require more frequent applications on cooperating components. We used the two most popular polymer materials. The first is high-density polyethylene (HDPE), used to make all kinds of rail spacers, dowels for fixing rails, sleeves, etc. The second, polyurethane (PUR) is most commonly used for rail pads of various shapes. The methodology and results of testing the impact of a lubricant (biodegradable oil) on the change of mechanical properties such as strength and hardness are presented. The tests were carried out at various temperatures; the time of exposure to oil was seven days; the results were referred to samples conditioned under standard conditions. The tests carried out on the impact of the biodegradable lubricant on polymeric materials (HDPE and PUR) showed little effect on the change of strength parameters of these materials. Celem niniejszego opracowania jest przedstawienie wymagań, metodyki oraz wyników badań oddziałania biodegradowalnego oleju na elementy z tworzyw sztucznych stosownych w budo-wie rozjazdu kolejowego. Krótko omówiono czym są rozjazdy kolejowe i jak działają oraz jakie występują problemy z substancjami używanymi do ich smarowania, które nie pozostają bez wpływu na właściwości mechaniczne i trwałość wyrobów z materiałów polimerowych. Materiały tego typu wchłaniają różnego rodzaju substancje chemiczne w większym lub mniejszym stopniu, a to ma wpływ na ich właściwości. Do badań został wykorzystany uniwersalny olej do smarowania o biodegradowalnych właściwościach, co jest jego największą zaletą. Jednak nie może on powodować pogorszenia pracy rozjazdu oraz zmieniać właściwości materiałów użytych do jego budowy. Tego typu oleje wymagają częstszego aplikowania na elementy współpracujące ze sobą. W pracy wykorzystano dwa najbardziej popularne materiały polimerowe. Pierw-szy to polietylen o dużej gęstości (HDPE), z którego wykonuje się wszelkiego rodzaju przekładki podszynowe, dyble do mocowania szyn, tuleje, itp. Drugi to poliuretan (PUR) stosowany najczęściej na przekładki podszynowe o różnym kształcie. Zaprezentowano metodykę i wyniki ba-dań oddziaływania środka smarnego (biodegradowalnego oleju) na zmianę właściwości mechanicznych takich jak wytrzymałość oraz twardość. Badania zostały przeprowadzone w różnych temperaturach, a czas ekspozycji na olej wynosił 7 dób, wyniki odniesiono do próbek klimatyzowanych w standardowych warunkach. Przeprowadzone badania oddziaływania biodegradowalnego środka smarnego na tworzywa polimerowe (HDPE i PUR), wykazały niewielki wpływ na zmianę parametrów wytrzymałościowych tych materiałów.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5579
Author(s):  
Ivo Domagała ◽  
Krzysztof Przystupa ◽  
Marcel Firlej ◽  
Daniel Pieniak ◽  
Agata Niewczas ◽  
...  

This paper discusses the issues of strength and creep of polymeric materials used in orthodontic appliances. Orthodontic biomechanics is focused on the movement of individual teeth or dental groups as a result of the force applied by orthodontic appliances. Stresses in the construction of functional and biomechanical appliances is generated when using the apparatus in the oral cavity. The orthodontic appliance must maintain its shape and not be damaged during treatment so strength and creep resistance are fundamental properties. It was assumed that the clinical success of orthodontic appliances can be determined by these performance properties. The aim of the work was the experimental assessment of comparative bending strength and creep resistance of selected popular polymer materials used in the production of biomechanical orthodontic appliances. Four commercial materials manufactured by the world class producers were tested: NextDent Ortho Rigid (Vertex-Dental B.V., Soesterberg, The Netherlands) marked as “1A”; Erkocryl (ERKODENT Erich Kopp GmbH, Pfalzgrafenweiler, Germany)-“2A”; Vertex Orthoplast (Vertex Dental B.V.), blue, marked as “3A” and material with the same name as “3A” but orange, marked in the article as “4A”. All the tests were carried out after aging in artificial saliva for 48 h at a temperature of 37 °C. Flexular strength and flexular modulus were made using the three point bending method according to the ISO 178 technical standard. Creep tests were carried out according to the method contained in ISO 899-2. The creep test was carried out in an artificial saliva bath at 37 °C. The creep tests showed significant differences in the strength, modulus and deformability of the tested materials. The strength reliability of the tested materials also varied. The research shows that the 2A material can be used for orthodontic applications in which long-term stresses should be lower than 20 MPa.


2018 ◽  
Vol 19 (6) ◽  
pp. 185-188
Author(s):  
Irena Nowotyńska ◽  
Tomasz Trzepieciński

The use of a particular material in the automotive industry is determined by its properties in the aspect of safety and the effects on the natural environment starting from production to its liquidation. We are constantly striving to reduce the costs of materials used while increasing the strength properties and the production of non-natural materials, e.g. composites. Among the modern materials appearing in the production of cars, a growing share of high-strength steels, plastics as well as light alloys based on aluminum and magnesium is observed. This article presents selected materials and technologies used in the automotive industry from the point of view of their impact on safety and environmental protection.


2019 ◽  
Vol 91 (1) ◽  
Author(s):  
Ryszard Krawczyk

Issues connected with the evaluation of weldability of thick-walled materials used to manufacture welded steel structures were brought forward in the article. Evaluation of weldability determined by analytical methods and verified in a process test according to the guidelines of SEP 1390 was presented. This test is recommended forthe research of thick-walled construction materials, in particular those working under dynamic load. Hardness and metallographic tests were also conducted to assess plastic properties of the materials, very important from the point of view of weldability.The purpose of the topic taken on was the assessment of usefulness of different systems of evaluation of weldability of thick-walled construction materials intended to beused in welded structures.


2015 ◽  
Vol 15 (2) ◽  
pp. 75-78 ◽  
Author(s):  
A.W. Orłowicz ◽  
M. Mróz ◽  
M. Tupaj ◽  
A. Trytek

Abstract Elaborated shapes of many car components are the reason for which the use of casting techniques to fabricate them is a solution well founded from the economical point of view. Currently applicable regulatory requirements concerning emissions of exhaust fumes force the carmakers to reduce the overall weight of their products, as this is a basic precondition for reducing fuel consumption. As a result, newly launched car models contain a continuously increasing share of thin-walled castings made of materials which ensure a satisfactory level of service properties. At the same time, developing new technological processes allowing to extend the service life of individual components by means of surface improving becomes more and more important.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2925
Author(s):  
Ivo Domagała ◽  
Krzysztof Przystupa ◽  
Marcel Firlej ◽  
Daniel Pieniak ◽  
Leszek Gil ◽  
...  

Background: Clinical success depends on the contact strength and wear resistance of medical devices made of polymer materials. The scientific goal resulted from the problem of using different methods of surface evaluation of materials used in the production of orthodontic appliances. The purpose of the work was an experimental comparative assessment of indentation hardness and scratch hardness and the sliding wear of four selected polymeric materials used in the manufacture of orthodontic appliances. Methods: Four commercial materials were compared. Shore hardness tests and a scratch test with a Rockwell indenter were performed. A sliding wear test was performed using the ball-on-disc method. Statistical PCA and correlation analyses were performed. Results: The results of scratch hardness measurements using a contact profilometer correlated with the Shore hardness to a greater extent than measurements made using an optical microscope. PCA showed that Shore hardness explains 45% of the total variance in all the results across the materials. Conclusions: The scratch hardness method allows for a more explicit ranking of orthodontic polymeric materials when measurements are made with a profilometer. The ranking of sliding wear resistance should be made separately.


Sign in / Sign up

Export Citation Format

Share Document