Comparative Analysis of the Physical and Mechanical Properties of Composites with Functional Fillers Based on Waste

2021 ◽  
Vol 410 ◽  
pp. 668-673
Author(s):  
Vyacheslav V. Barakhtenko ◽  
Tatiana H. Sahabutdinova ◽  
Yury V. Novikov

The article is devoted to research in the development of composite materials based on polyvinyl chloride and industrial waste from the metallurgical, energy and mining industries. The properties of dispersed waste have been studied, which make it possible to speak of the possibility of their use as fillers for polymer compositions. A comparative analysis of the tested physical and mechanical properties is carried out, depending on the characteristics of the particle size of the fillers. It was revealed that from the point of view of construction materials, all the wastes under study can be used as fillers. The development will make it possible to dispose of industrial waste to obtain useful products and save natural non-metallic materials used in the creation of composites.

2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


Author(s):  
I Sheka ◽  
Ye Tsivka

Purpose. To analyze composite materials and prospects of their use as fastening materials for mining of coal mines.Perform a comparative analysis of the physical and mechanical properties of the innovative material carbon fiber and metallic materials, as well as compare their features. To determine the possibility of using carbon fiber as a fastening material for mining of coal mines. Research methodology. The generalization of physical and mechanical properties of carbon fiber on the basis of its analysis is performed. The features of mechanical properties of carbon fiber, steel and aluminum are compared, which showed that this composite material has the best physical and mechanical properties and it is expedient to use it in the fastening elements of mine workings. Research results. The areas of use of composite materials in industry are analyzed and generalized, and it is concluded that it is better to use carbon fiber as a fastening material for coal mine workings. A comparative analysis of the physical and mechanical properties of carbon fiber and steel is performed, which shows that this composite material has identical (and sometimes even better) properties as metallic materials. The advantages and disadvantages of carbon fiber as a fastening material for mining of coal mines are estimated. It is specified that the restraining factor, today, is the cost of carbon fiber, and later their price will decrease and demand will increase. It is concluded that when using this composite material in the fasteners of mine workings, it is possible to increase the pace of their implementation, reduce the complexity of the work performed and improve working conditions while facilitating the design. Scientific novelty. It is established that carbon fiber as a composite material can be used in the fastening elements of the preparatory workings of coal mines. Practical value. According to the results of the analysis, it is established that carbon plastics can be used in the fastening elements of mine workings, which will promote the development of underground coal mining.


2016 ◽  
Vol 677 ◽  
pp. 186-190 ◽  
Author(s):  
Monika Čáchová ◽  
Eva Vejmelková ◽  
Kateřina Šestáková ◽  
Pavel Reiterman ◽  
Martin Keppert ◽  
...  

This article is focused on cement based composites. Two cements differing in mineralogical composition are utilised as main binder in composites mixtures. Results of measured physical parameters of studied materials are presented. For the sake of comparison, a reference material with Portland cement was also prepared. Basic physical properties (measured by water vacuum saturation method and by helium pycnometry), characterizations of pore system (determined by mercury porosimetry) and mechanical properties are the matter of this study. Composites show various open porosity; the results of open porosity of materials containing special cements show higher values, in comparison with composite based on Portland cement. This fact of course influences other material characteristics - mainly mechanical properties.


2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2021 ◽  
Vol 14 ◽  
Author(s):  
Menandro N. Acda

Background: High-density fiberboards (HDF) are widely used as a substitute for solid wood in furniture, cabinet, construction materials, etc. Wood fibers are often used in the production of HDF but the use of renewable materials has gained worldwide interest brought about by global pressure to pursue sustainable development. An abundant source of renewable fibers that can be used to produce HDF is keratin from waste chicken feathers. The goal of the study is to investigate the use of keratin fibers in combination with wood fibers to produce HDF. No or limited studies have been conducted in this area and if successful, it could offer an alternative utilization for the billions of kilograms of waste feather produced by the poultry industry. HDF is a high volume feather utilization that can reduce pollution and help solve solid waste disposal problems in many countries. Methods: A series of dry-formed HDFs containing varying ratios of wood and keratin fibers bonded by polyurethane resin were produced. The physical and mechanical properties of the HDFs were determined. Results : The properties of the HDFs were affected by varying ratios of wood particles and keratin fibers. Dimensional stability as indicated by low levels of thickness swelling (<4.6%) and water absorption (<10%) was observed. Internal bond (2.47 MPa), MOE (5.8 GPa) and MOR (45 MPa) values were higher or comparable to those reported in the literature. Conclusion: HDF formed using a combination of wood and keratin fibers bonded together by polyurethane resin to as much as 50% keratin fibers were dimensionally stable with stiffness and strength above the minimum requirements for general use HDF as prescribed by EN 622-5.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Seghir Ammari ◽  
Mohammed Bachir Tobchi ◽  
Yahia Amrani ◽  
Anouer Mim ◽  
Madani Bederina ◽  
...  

Purpose This study is part of the valorization of local materials and the reuse of industrial waste in construction. This study aims to improve the physical-mechanical properties of sand concrete. This work is a continuation of previous studies conducted on sand concrete, the purpose of which is to introduce industrial waste into this material. For this purpose, a glass waste in powder form is added. Design/methodology/approach This study is focused on the effect of adding glass powder (GP) whose mass percentage varies from 0 to 40% with an interval of 10% to target the right composition that ensures the best compromise between the characteristics studied. Findings The results found show that the workability and density of the studied concretes decreased with increasing GP dosage. Indeed, the optimal addition which constitutes the best compromise between the studied properties is 10% of GP. Improvements of up to about 9% in the case of flexural strength and about 18% in the case of compressive strength. The thermal conductivity has been reduced by 12.74%, the thermal diffusivity which characterizes the notion of thermal inertia has been reduced by about 4% and the specific heat mass has been reduced by 7.80%. Also, the shrinkage has been reduced by about 20%. The microstructure of the studied composite shows a good homogeneity between the aggregates. Finally, the addition of GP to sand concrete gives very encouraging results. Originality/value The interest of this study is in two parts. The first one is the exploitation of local materials: dune sand, river sand and limestone filler to meet the growing demand for construction materials. And the second one is the reuse of glass waste, in the form of powder (GP), to solve the environmental problem. All this participates in the improvement of the physical-mechanical properties of sand concrete and the extent of its response to the development of an economical structural concrete.


2012 ◽  
Vol 49 (No. 2) ◽  
pp. 37-43 ◽  
Author(s):  
I. Petranský ◽  
Š. Drabant ◽  
J. Ďuďák ◽  
A. Žikla ◽  
I. Grman ◽  
...  

The goal of the measurement of the tractor ZTS 164 45 equipped with digital electrohydraulical control EHR-D BOSCH during ploughing with ploughs KUHN (4 bottoms) and 5 PHX 35 (5 bottoms) was to obtain time dependent states of pressure in the hydraulic system of the three point hitch of tractor. From the point of view of comparison of obtained results testing conditions were determinated with respect to physical and mechanical properties of soil such as soil volume mass, soil humidity, penetration resistance and shear resistance of soil. Beyond these measurements also measurements of operation parameters as a&nbsp;ploughing depth, ploughing width, working speed and fuel consumption were accomplished. The measured results of physical and mechanical properties of soil show big content of loam elements and stones in the soil. Simultaneously the measured results of the operation parameters of the ploughing sets confirmed that the ploughs KUHN and 5 PHX 35 are suitable for tractor ZTS 164 45. Based on the measured results there is a possibility to infer following conclusions: Control system of the three point hitch offers a reliable function. Hydraulic circuit is equipped by an improper distributor which causes pressure peaks which are corres-<br />ponding with safety valve adjustment. Hydraulic circuit has a&nbsp;low conductive resistance. Loading of tractor body is higher when using mounted plough than with semi mounted plough.


2013 ◽  
Vol 583 ◽  
pp. 9-15 ◽  
Author(s):  
Victor Geanta ◽  
Ionelia Voiculescu ◽  
Radu Stefanoiu ◽  
Elena Roxana Rusu

Stainless steels, commercial as well as with special properties, are the principal metallic materials used for medical devices manufacturing. Stainless steels for medical devices should have superior mechanical properties, as: hardness, wear resistance, tensile strength, elongation, fracture toughness, creep resistance etc. This paper aims to present experimental researches regarding the obtaining in vacuum arc remelting device (VAR) of austenitic and martensitic stainless steels and their characterization from microstructure and microhardness point of view.


Sign in / Sign up

Export Citation Format

Share Document