scholarly journals Failure analysis of motorcycle shock breakers

2021 ◽  
Vol 11 (1) ◽  
pp. 1150-1159
Author(s):  
Afrizal Yose Mahendra ◽  
Aditya Rio Prabowo ◽  
Triyono Triyono

Abstract The shock breaker is one of the most important parts of a motorcycle, which functions as a vibration damper. This study aims to analyze the causes of motorcycle shock breaker failure. The research method used is comprised of visual observation, chemical composition testing, Vickers hardness testing, scanning electron microscopy-energy dispersive X-ray spectroscopy analysis, and tensile testing of a damaged shock breaker. From visual observation, it is found that the damage can be classified as a fatigue fracture, forming a damage pattern at 45°. The chemical composition testing results of the shock breaker fractures show that the material includes low-carbon alloy steel (of ST42 series) with a carbon content of 0.162%. The average hardness value of the damaged part of the shock breaker was increased to 204.87 HV, compared with 171.02 HV in areas far from the damage. The difference in hardness in the shock breaker was caused by the high stress acting on the shock breaker and the consequent strain hardening. The results of this study indicate that the failure mechanism of the motorcycle shock breaker was a functional failure due to errors in the shock breaker manufacturing process and fatigue.

2021 ◽  
Vol 892 ◽  
pp. 81-88
Author(s):  
Husaini ◽  
Ali Nurdin ◽  
Abdillah Sofian ◽  
Nuzan Rizki Muhammad

The rim is one of the main components in a motorized vehicle system, both two and three wheels. Rim loads when used are dynamic and often even shock. This study aims to study the mechanical characteristics, especially the hardness properties of spoke wheel rims and cast wheel rims made of aluminum alloy used in motorcycles and compare the results. Hardness testing is carried out on the spoke wheel and cast wheel specimens, using the Rockwell method with an identifier of 1/16 ball and a spectrometer used for both microstructure observations. The result of the average hardness test for the spoke wheel is HRB 99.3, while for the cast wheel is HRB 76.5. From the hardness test, it can be concluded that the hardness of the spoke wheel type is higher than the cast wheel type due to the difference in the manufacturing process. Cast wheel rims can withstand a load of 3 tons (30000 N) and the value of rim tension that can be accepted until the fracture is 45.84 MPa. Meanwhile, spoke wheel rims have the ability to withstand smaller compressive loads than cast wheel rims, which are 2 tonnes (20000 N) and the rims can accept the stress of 66.04 MPa until they break.


2021 ◽  
Vol 0 (2) ◽  
pp. 9-12
Author(s):  
T.M. Solovev ◽  
◽  
E.S. Petukhova ◽  
G.V. Botvin ◽  
T.A. Isakova ◽  
...  

The article represents the results of the research of the chemical composition of mammoth tusk Mammuthus Primigenius and its phase transformation using thermogrammetric (TGA) and X-ray spectroscopy analysis (XRD). The elemental analysis of mammoth tusk showed, that besides basic elements in the structure of hydroxyapatite (HAP) contains magnesium ions, i.e. hydroxyapatite in the studied samples is presented in magnesium-substituted form. The thermal decomposition of mammoth tusk components occurs in wide temperature range with a change in the structure of the mineral part from hydroxyapatite to whitlockite. It was found that this process is caused by the presence of magnesium ions.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1325
Author(s):  
Noorina Hidayu Jamil ◽  
Mohd. Mustafa Al Bakri Abdullah ◽  
Faizul Che Pa ◽  
Hasmaliza Mohamad ◽  
Wan Mohd Arif W. Ibrahim ◽  
...  

Kaolin, theoretically known as having low reactivity during geopolymerization, was used as a source of aluminosilicate materials in this study. Due to this concern, it is challenging to directly produce kaolin geopolymers without pre-treatment. The addition of ground granulated blast furnace slag (GGBS) accelerated the geopolymerization process. Kaolin–GGBS geopolymer ceramic was prepared at a low sintering temperature due to the reaction of the chemical composition during the initial stage of geopolymerization. The objective of this work was to study the influence of the chemical composition towards sintering temperature of sintered kaolin–GGBS geopolymer. Kaolin–GGBS geopolymer was prepared with a ratio of solid to liquid 2:1 and cured at 60 °C for 14 days. The cured geopolymer was sintered at different temperatures: 800, 900, 1000, and 1100 °C. Sintering at 900 °C resulted in the highest compressive strength due to the formation of densified microstructure, while higher sintering temperature led to the formation of interconnected pores. The difference in the X-ray absorption near edge structure (XANES) spectra was related to the phases obtained from the X-ray diffraction analysis, such as akermanite and anothite. Thermal analysis indicated the stability of sintered kaolin–GGBS geopolymer when exposed to 1100 °C, proving that kaolin can be directly used without heat treatment in geopolymers. The geopolymerization process facilitates the stability of cured samples when directly sintered, as well as plays a significant role as a self-fluxing agent to reduce the sintering temperature when producing sintered kaolin–GGBS geopolymers.


2011 ◽  
Vol 681 ◽  
pp. 431-436 ◽  
Author(s):  
Vincent Savaria ◽  
Majid Hoseini ◽  
Florent Bridier ◽  
Philippe Bocher ◽  
Patrick Arkinson

It is well known that induction surface heating followed by rapid quenching generally increases the fatigue life of steel components subjected to bending loads by significantly postponing the micro-crack nucleation and propagation processes. The phase transformation volume change combined with severe thermal gradients leave a hard surface layer under relatively high and deep compressive residual stresses. In this paper, residual stress measurements are done on induction hardened AMS6414 martensitic steel (aerospace grade of AISI4340) cylinders using two techniques: the so-called contour method and X-ray diffraction. For both methods, induction hardened parts raise many challenges. The contour method hardly describes high stress gradients near the surface while the diffraction technique accuracy appears limited considering the strong microstructural variation and the high depth of the stresses to be measured. For the contour method, a CMM and an optical pen using the confocal chromatic imaging principle were used to measure the surface after precision WEDM cutting. The effect of data filtering and smoothing on the calculated stresses are discussed. For X-ray analysis, the effect of stress relaxation during layer removal and analysis technique is explained. The difference between the residual stress measurements done with the two techniques is discussed with emphasis on both the surface and the in-depth measurements.


2005 ◽  
Vol 495-497 ◽  
pp. 507-512 ◽  
Author(s):  
Polina Volovitch ◽  
F. Caleyo ◽  
Thierry Baudin ◽  
Ph. Gerber ◽  
Richard Penelle ◽  
...  

The recrystallization process of two low-carbon ferritic steels with low fraction of alloying elements are modelled. The difference in chemical composition and initial thermomechanical treatment between these two steels can be the cause of the difference in the stored energy distribution after 40% deformation by cold rolling or plane compression simulated by Finite Element Modelling (FEM). In both cases the deformation texture is characterized by the presence of a g- fibre with a reinforcement for the {111}<112> component. The microstructure simulated by FEM is used as initial structure for Monte-Carlo simulations of recrystallization. In these simulations, the variation in chemical composition and initial thermo-mechanical treatment is introduced by the difference in stored energy distribution while recovery, nucleation and grain growth are simulated assuming that grain boundary properties mainly depend on misorientation. Modelling results are in agreement with experimental observations: that is the presence of a g- recrystallization fibre which corresponds to the initial deformed state and the development of {111}<110> component which is not sharp in the deformation microstructure.


2005 ◽  
Vol 874 ◽  
Author(s):  
Ravi K. Nalla ◽  
John H. Kinney ◽  
John A. Pople ◽  
Thomas M. Breunig ◽  
Antoni P. Tomsia ◽  
...  

AbstractMost non-traumatic fractures occur in teeth that have been treated, for example restored or endodontically repaired. It is therefore essential to evaluate the structure and mechanical properties of altered forms of dentin. One such altered dentin is transparent (sclerotic) dentin, which forms gradually with aging. Accordingly, in the present study, we seek to study differences in the structure, i.e., dentinal mineral concentration, mineral crystallite size, and the mechanical properties, i.e., elastic moduli, fracture toughness and fatigue behavior, of normal and transparent root dentin. The mineral concentration, measured by x-ray computed tomography, was found to be significantly higher in transparent dentin, with the majority of the increase being due to the closure of the tubule lumens. Crystallite size, as measured by small angle x-ray scattering, appeared to be slightly reduced in transparent dentin, although the difference was not statistically significant. The elastic properties remained unchanged, although transparent dentin showed almost no yield/post-yield behavior. The fracture toughness was lowered by roughly 20%, while the fatigue resistance was deleteriously affected at high stress levels. These results are discussed in terms of the altered microstructure of transparent dentin.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6332-6343
Author(s):  
He Sun ◽  
Yan Yang ◽  
Yanxia Han ◽  
Mingjin Tian ◽  
Bin Li ◽  
...  

To investigate the decay mechanisms of red oak (Quercus rubra) and hemor (Schima spp.) woods in the old architectural structure of Xichuan Guild Hall, chemical composition changes were determined and analyzed with X-ray photoelectron spectroscopy (XPS). The results showed that decaying resulted in a noticeable decrease of the O/C from 0.59 to 0.42 in the red oak wooden components. The increase of C1 contribution, decrease of C4 contribution, increase of O1 and O3 contributions, and decrease of O2 contribution indicated that the carbohydrates in red oak wooden components can be easily degraded by fungi compared with lignin. Moreover, decaying resulted in a slight decrease of the O/C from 0.49 to 0.47 in the hemor wooden components. The results of increase of C1 contribution, decrease of C3 and C4 contributions, increase of O1, and decrease of O2 and O3 contributions indicated that carbohydrate and lignin were all degraded by fungi.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1169
Author(s):  
Ricardo Ribeiro ◽  
Diana Capela ◽  
Miguel Ferreira ◽  
Rui Martins ◽  
Pedro Jorge ◽  
...  

In this work, X-ray fluorescence (XRF) and Laser-induced breakdown spectroscopy (LIBS) analyses were applied to samples of quartz, montebrasite, and turquoise hydrothermal veins in the Argemela Tin Mine (Central Portugal). Montebrasite (LiAl(PO4)(OH,F)) is potentially the main ore mineral; with its alteration, lithium (Li) can disseminate into other minerals. A hand sample was cut and analyzed by XRF and LIBS for several elements of interest including Cu, P, Al, Si, and Li. Although XRF cannot measure Li, results from its analysis are effective for distinguishing turquoise from montebrasite. LIBS analysis complemented this study, making it possible to conclude that turquoise does not contain any significant Li in its structure. The difference in spot size between the techniques (5 mm vs. 300 µm for XRF and LIBS, respectively) resulted in a poorer performance by XRF in accurately identifying mixed minerals. A thin section was petrographically characterized and mapped using LIBS. The mapping results demonstrate the possibility of the successful identification of minerals and their alterations on a thin section. The results of XRF analysis and LIBS mapping in petrographic sections demonstrate the efficacy of these methods as tools for element and mineral identification, which can be important in exploration and mining phases, complementing more traditional techniques.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
C. Serrar ◽  
P. Guiraldenq

The wear-fatigue rupture of Ni88P11.78Co0.12Fe0.10 (NiP) and Ni80.55Cr15.25B4.20 (NiCrB) glasses prepared by planar–flow casting have been studied using a test under simultaneous constant and cyclic loading generated by an eccentric rotation ceramic antagonist. For better apprehending the phenomena related to the structural state changes of samples before and after tests, structural characterization by x-ray diffraction, mechanical characterization by measuring Vickers microhardness (HV 0.1) and chemical composition by X-ray photoelectron spectroscopy (XPS) analysis have been carried out on as-quenched and worn dull side ribbons. Rupture surfaces, in S–N curves, have been measured by scanning electron microscope. Wear-fatigue contact tests consist to impose, simultaneously, a traction strain and cyclic normal stresses which generate traction, compression, rolling, bending and shearing. All results obtained from the two selected glasses (NiP and NiCrB) are systematically compared with those of a nickel pure crystalline foil (Ni). We evaluate mainly the wear mechanism, the mode and the typical rupture surface observed in NiP, NiCrB and Ni specimens. We specify the conditions of obtaining these rupture surfaces which often present in smooth plane, veining and “chevrons” patterns. All results show a great wear and fatigue resistance for the two metallic glasses compared to Ni. The NiCrB wear resistance is superior to that of NiP, while the difference in their fatigue limit is not clearly distinct. The reasons for the differences in wear and fatigue behavior will be discussed in relation to the metallic glass thermal stability, chemical composition, microhardness and surface rupture topography.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


Sign in / Sign up

Export Citation Format

Share Document