scholarly journals Synthesis and characterization of alternating poly(amide urea)s and poly(amide urethane urethane)s from ε-caprolactam, diamines, and diphenyl carbonate or ethylene carbonate

e-Polymers ◽  
2003 ◽  
Vol 3 (1) ◽  
Author(s):  
Luc Ubaghs ◽  
Bhaskar Sharma ◽  
Helmut Keul ◽  
Hartwig Höcker ◽  
Ton Loontjens ◽  
...  

Abstract Alternating poly(amide urea)s from ε-caprolactam, diamines H2N-(CH2)x- NH2 (x = 2 - 4), and diphenyl carbonate were prepared in two steps. The microstructure of the poly(amide urea)s, as determined by means of 1H NMR spectroscopy, reveals a strictly alternating sequence of the building blocks. The molecular weights and polydispersities obtained were 7500 < Mn < 10 000 and 1.48 < Mw/Mn < 1.56, respectively. Thermal properties were determined by means of differential scanning calorimetry (DSC) (163.9°C < Tm < 197.2°C; 55.5°C < Tg (2nd heating) < 72.2°C), and thermogravimetric analysis (TGA). TGA shows a three-step decomposition at 200, 350, and 450°C, which was attributed to the cleavage of O-phenyl urethane end groups, as well as urea and amide linkages. These assignments were made by comparison with model compounds. Furthermore, alternating poly- (amide urethane urethane)s from ε-caprolactam, diamines, and ethylene carbonate were prepared in three steps. The microstructure of the poly(amide urethane urethane)s, as determined by means of 1H NMR spectroscopy, reveals imperfections. The molecular weights and polydispersities obtained were 5400 < Mn < 17 000 and 2.08 < Mw/Mn < 2.99, respectively. Thermal properties were determined by means of DSC (155.9°C < Tm < 159.0°C; 35.5°C < Tg (2nd heating) < 39.0°C) and TGA. TGA shows a complex decomposition due to the formation of ethylene carbonate by cleavage of the urethane groups (at approx. 230°C) and formation of poly(amide urea)s. The newly formed poly(amide urea)s decompose in a similar way as the poly(amide urea)s.

2011 ◽  
Vol 181-182 ◽  
pp. 185-188
Author(s):  
Run Tao Dong ◽  
Qing Bin Xue ◽  
Ling Min Sun ◽  
Quan Xuan Zhang

A series of azobenzene containing group Poly (L-lactic acid) (PLLA) were synthesized by Ring-Opening Polymerization of L-lactide (L-LA) catalysted by Sn (Oct)2initiated by alcohol-OH containing the azobenzene chromophores. Their molecular weights were well controlled by the feed ratio as characterized by Gel Permeation Chromatography (GPC) and1H NMR Spectrometry and agreed well with theoretical values. The thermal properties and liquid crystal phases were investigated by Differential Scanning Calorimetry (DSC), polarized optical microscopy (POM) and X-ray Diffraction (XRS) measurements. Cis-trans photoisomerization behavior of the polymers in the solutions and the films were studied with UV irradiation. By the Circular Dichroism Spectroscopy (CD) characterization of the solutions and films of the polymer, the PLLA segments show huge optical rotation power in helical structure.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2019 ◽  
Vol 17 (1) ◽  
pp. 1080-1086
Author(s):  
Elżbieta Chmiel-Szukiewicz

AbstractSyntheses of oligoetherols with a 1,3-pyrimidine ring and boron atoms using 6-aminouracil, ethylene carbonate and boric acid has been proposed. The structure of the obtained products were determined by instrumental methods (IR, 1H-NMR and MALDI-ToF spectra). The physicochemical and thermal properties of oligoetherols were examined. The products were characterized by high thermal stability. Based on the tests performed, it was found that oligoetherols obtained from 6-aminouracil, boric acid and ethylene carbonate are suitable for the manufacturing of polyurethane foams with improved thermal stability and reduced flammability.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84712-84721 ◽  
Author(s):  
Maria A. Cardona ◽  
Marina Kveder ◽  
Ulrich Baisch ◽  
Michael R. Probert ◽  
David C. Magri

Two phenyl β-aminobisulfonate ligands characterised by UV-visible absorption, EPR and 1H NMR spectroscopy exhibit evidence for binding with Cu2+ in water and methanol.


2015 ◽  
Vol 87 (11-12) ◽  
pp. 1085-1097 ◽  
Author(s):  
Li Wang ◽  
Stefan Baudis ◽  
Karl Kratz ◽  
Andreas Lendlein

AbstractA versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)2 as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto- and thermo-sensitive polymer networks were prepared via two subsequent surface-initiated ring-opening polymerizations (ROPs) with ω-pentadecalactone and ε-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85°C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and 1H-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(ω-pentadecalactone) (OPDL) and oligo(ε-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few ω-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)2 was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Albena Lederer ◽  
Mona Abd Elrehim ◽  
Falko Schallausky ◽  
Dieter Voigt ◽  
Brigitte Voit

AbstractElution fractionations of broadly molar mass-distributed, hyperbranched poly(urea-urethane)s with OH- and Ph- end groups were carried out to obtain a number of macromolecular samples possessing different molar masses at the same chemical structure. The characterization of the polymers was performed by SEC, MALLS, 1H-NMR, MALDI-TOF-MS and viscosity measurements. Modifications of the OH-end groups of the polymers were carried out. We observed a strong influence of the end groups on the solution behaviour of the hyperbranched samples. The molecular shape of the hyperbranched polymers in solution was compared to their linear analogue using the Kuhn-Mark-Houwink- Sakurada relationship. The calculated contraction factors between 0,15 and 0,7 depending on the molar masses correspond to a very compact structure of the modified branched polymers at high molar masses.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4687
Author(s):  
Arnold Martínez ◽  
Mauricio Carmona ◽  
Cristóbal Cortés ◽  
Inmaculada Arauzo

The growing interest in developing applications for the storage of thermal energy (TES) is highly linked to the knowledge of the properties of the materials that will be used for that purpose. Likewise, the validity of representing processes through numerical simulations will depend on the accuracy of the thermal properties of the materials. The most relevant properties in the characterization of phase change materials (PCM) are the phase change enthalpy, thermal conductivity, heat capacity and density. Differential scanning calorimetry (DSC) is the most widely used technique for determining thermophysical properties. However, several unconventional methods have been proposed in the literature, mainly due to overcome the limitations of DSC, namely, the small sample required which is unsuitable for studying inhomogeneous materials. This paper presents the characterization of two commercial paraffins commonly used in TES applications, using methods such as T-history and T-melting, which were selected due to their simplicity, high reproducibility, and low cost of implementation. In order to evaluate the reliability of the methods, values calculated with the proposed alternative methods are compared with the results obtained by DSC measurements and with the manufacturer’s technical datasheet. Results obtained show that these non-conventional techniques can be used for the accurate estimation of selected thermal properties. A detailed discussion of the advantage and disadvantage of each method is given.


2019 ◽  
Vol 91 (6) ◽  
pp. 957-965
Author(s):  
Meltem Akkulak ◽  
Yasemin Kaptan ◽  
Yasar Andelib Aydin ◽  
Yuksel Avcibasi Guvenilir

Abstract In this study, rice husk ash (RHA) silanized with 3-glycidyloxypropyl trimethoxysilane was used as support material to immobilize Candida antarctica lipase B. The developed biocatalyst was then utilized in the ring opening polymerization (ROP) of ε-caprolactone and in situ development of PCL/Silica nanohybrid. The silanization degree of RHA was determined as 4 % (w) by thermal gravimetric analysis (TGA). Structural investigations and calculation of molecular weights of nanohybrids were realized by proton nuclear magnetic resonance (1H NMR). Crystallinity was determined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Scanning Electron Microscopy (SEM) was used for morphological observations. Accordingly, the PCL composition in the nanohybrid was determined as 4 %, approximately. Short chained amorphous PCL was synthesized with a number average molecular weight of 4400 g/mol and crystallinity degree of 23 %. In regards to these properties, synthesized PCL/RHA composite can find use biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document