scholarly journals Synthesis, characterization and properties of polymers containing simultaneously the imine and amide moieties.

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Christian Sánchez ◽  
Carlos Bustos ◽  
Fabiola Alvarado ◽  
Eduardo Schott ◽  
Nicolas Gatica ◽  
...  

Abstract We present the synthesis of polymers by means of self-condensation of ethyl 3-aminophenyl acetate, using HCl as catalyst at high temperature and reduced pressure. This polymer was fractionated by successive precipitation from mixtures of methanol/diethylether of different polarity, yielding three polymeric fractions: Poly A, Poly B and Poly C. Likewise, under the same conditions, 3- aminophenyl acetic acid yields only one polymeric fraction, Poly D. These polymers were characterized by elemental analysis, IR and, in some cases, by 1H-NMR and X-Ray Photoelectron Spectroscopy (XPS). The obtained results show that polymers can be classified as hybrid materials, because in the backbone, they contain simultaneously the amide and imine groups and, at the end of the chain, they have amine and carboxylic acid functions. High solubility of some of these polymers in DMF or methanol has permitted the determination of viscosities and the preparation of films. Poly B and Poly C films exhibit amorphous morphology; and Poly D display spherullitic-type semi-crystallization pattern. The polymers can absorb solvents and they can swell up forming large-sized gels in DMF and methanol. Besides these polymers have high thermal stability that reaches a weight loss of 11.60% at 353 °C.

2013 ◽  
Vol 68 (12) ◽  
pp. 1310-1320 ◽  
Author(s):  
Thomas M. Klapötke ◽  
Andreas Preimesser ◽  
Jörg Stierstorfer

Several 3,6-disubstituted 1,2,4,5-tetrazines were synthesized by nucleophilic substitution using 3,6-bis-(3,5-dimethyl-pyrazol-1-yl)-1,2,4,5-tetrazine and 3,6-dichloro-1,2,4,5-tetrazine as electrophiles. All new compounds were characterized by 1H NMR, 13C NMR and vibrational spectroscopy, mass spectrometry and elemental analysis (C,H,N). For analysis of the thermostability, differential scanning calorimetry (DSC) was used. Especially, the symmetrically bis-3,5-diamino-1,2,4- triazolyl-substituted derivative shows a very high thermal stability up to 370 °C. Therefore its energetic properties were determined and compared with thoses of hexanitrostilbene (HNS). The crystal structures of 3,6-bishydrazino-1,2,4,5-tetrazine, 3,6-dichloro-1,2,4,5-tetrazine and 3-amino-6-(3,5- diamino-1,2,4-triazol-1-yl)-1,2,4,5-tetrazine dihydrate have been determined by low-temperature X-ray diffraction


2019 ◽  
Vol 17 (1) ◽  
pp. 1080-1086
Author(s):  
Elżbieta Chmiel-Szukiewicz

AbstractSyntheses of oligoetherols with a 1,3-pyrimidine ring and boron atoms using 6-aminouracil, ethylene carbonate and boric acid has been proposed. The structure of the obtained products were determined by instrumental methods (IR, 1H-NMR and MALDI-ToF spectra). The physicochemical and thermal properties of oligoetherols were examined. The products were characterized by high thermal stability. Based on the tests performed, it was found that oligoetherols obtained from 6-aminouracil, boric acid and ethylene carbonate are suitable for the manufacturing of polyurethane foams with improved thermal stability and reduced flammability.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tae Hyeong Kim ◽  
Hyeji Kim ◽  
Hyo Jun Jang ◽  
Nara Lee ◽  
Kwang Hyun Nam ◽  
...  

AbstractIn the study reported herein, silver-coated copper (Ag/Cu) powder was modified with alkanethiols featuring alkyl chains of different lengths, namely butyl, octyl, and dodecyl, to improve its thermal stability. The modification of the Ag/Cu powders with adsorbed alkanethiols was confirmed by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Each powder was combined with an epoxy resin to prepare an electrically conductive film. The results confirmed that the thermal stability of the films containing alkanethiol-modified Ag/Cu powders is superior to that of the film containing untreated Ag/Cu powder. The longer the alkyl group in the alkanethiol-modified Ag/Cu powder, the higher the initial resistance of the corresponding electrically conductive film and the lower the increase in resistance induced by heat treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Huan ◽  
Li Tang ◽  
Dongmei Deng ◽  
Huan Wang ◽  
Xiaojing Si ◽  
...  

Background: Hydrogen peroxide (H2O2) is a common reagent in the production and living, but excessive H2O2 may enhance the danger to the human body. Consequently, it is very important to develop economical, fast and accurate techniques for detecting H2O2. Methods: A simple two-step electrodeposition process was applied to synthesize Pd-Cu/Cu2O nanocomposite for non-enzymatic H2O2 sensor. Cu/Cu2O nanomaterial was firstly electrodeposited on FTO by potential oscillation technique, and then Pd nanoparticles were electrodeposited on Cu/Cu2O nanomaterial by cyclic voltammetry. The chemical structure, component, and morphology of the synthesized Pd-Cu/Cu2O nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical properties of Pd-Cu/Cu2O nanocomposite were studied by cyclic voltammetry and amperometry. Results: Under optimal conditions, the as-fabricated sensor displayed a broad linear range (5-4000 µM) and low detection limit (1.8 µM) for the determination of H2O2. The proposed sensor showed good selectivity and reproducibility. Meanwhile, the proposed sensor has been successfully applied to detect H2O2 in milk. Conclusion: The Pd-Cu/Cu2O/FTO biosensor exhibits excellent electrochemical activity for H2O2 reduction, which has great potential application in the field of food safety.


2020 ◽  
Author(s):  
Zheng Chen ◽  
Aleksander Jaworski ◽  
Jianhong Chen ◽  
Tetyana Budnyak ◽  
Ireneusz Szewczyk ◽  
...  

Metal-free nitrogen-doped carbon is considered as a green functional material, but the structural determination of the atomic positions of nitrogen remains challenging. We recently demonstrated that directly-excited solid state <sup>15</sup>N NMR (ssNMR) spectroscopy is a powerful tool for the determination of such positions in an N-doped carbon at natural <sup>15</sup>N isotope abundance. Here we present a green chemistry approach to the synthesis of N-doped carbon using cellulose as precursor, and a study of the catalytic properties and atomic structures of the related catalyst. The N-doped carbon (NH<sub>3</sub>) was obtained by oxidation of cellulose with HNO<sub>3</sub> followed by ammonolysis at 800°C. It had a N content of 6.5 wt.% and a surface area of 557 m<sup>2 </sup>g<sup>–1</sup>, and <sup>15</sup>N ssNMR spectroscopy provided evidence for graphitic nitrogen besides of regular pyrrolic and pyridinic nitrogen. This structure determination enabled probing the role of graphitic nitrogen for electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitrite reduction reaction. The N-doped carbon catalyst (NH<sub>3</sub>) had higher electrocatalytic activities in OER and HER under alkaline conditions and a higher activity for nitrite reduction, as compared with a catalyst prepared by carbonization of the HNO<sub>3</sub>-treated cellulose in N<sub>2</sub>. The electrocatalytic selectivity for nitrite reduction of the N-doped carbon catalyst (NH<sub>3</sub>) was directly related to the graphitic nitrogen functions. Complementary structural analysis by means of <sup>13</sup>C and <sup>1</sup>H ssNMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature N<sub>2 </sub>adsorption were preformed and provided support to the findings. The results show that directly-excited <sup>15</sup>N ssNMR at natural <sup>15</sup>N abundance is generally capable to provide information on N-doped carbon materials, and it is expected that the approach can be applied to a wide range of solids with an intermediate amount of N atoms.


Sign in / Sign up

Export Citation Format

Share Document