A Compact Coplanar Waveguide (CPW)-Fed Zeroth-Order Resonant Filter for Bandpass Applications

Frequenz ◽  
2017 ◽  
Vol 71 (7-8) ◽  
Author(s):  
Dilip Kumar Choudhary ◽  
Raghvendra Kumar Chaudhary

AbstractA new CPW-fed bandpass filter based on zeroth order resonant (ZOR) technique is presented in this paper. Proposed filter structure is designed on a CPW single layer where via is not required, hence reduces fabrication complexity. The property of metamaterial of ZOR has been utilized to reduce the filter size. The proposed structure is symmetrically CPW-fed and contains tuning-fork stub, which connects patch to CPW ground plane. The metamaterial properties are characterized by plotting dispersion diagram of proposed structure. The experimental result of proposed filter design shows an insertion loss of 0.51 dB, return loss of 22.5 dB with fractional bandwidth 61.5 % at centre frequency 2.60 GHz. The size of the filter is 0.45 λg×0.36 λg (λg is the guided wavelength at centre frequency).

2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Igbafe Orikumhi ◽  
Mohamad Rijal Hamid ◽  
Ali Nyangwarimam Obadiah

A square slot antenna fed by a coplanar waveguide (CPW) is presented in this paper. The design consist of two pairs of “F” shaped planar strips placed within a square slotted ground. The strips are used to excite multiple resonant frequencies, the strips are connected to the ground plane by means of ideal switches. The proposed antenna has achieved multiple resonant frequencies of 2.4/5.2/5.8 GHz for WLAN and 3.5/5.5 for WiMAX applications. The measured results shows a good agreement with the simulated results in terms of return loss, radiation pattern and gain. The proposed antenna is designed for the frequency range of 2 GHz to 7 GHz which makes it suitable for Bluetooth, WLAN and WiMAX applications. 


2020 ◽  
Vol 14 (2) ◽  
pp. 104-110
Author(s):  
Mustafa Berkan Bicer

In this study, a coplanar waveguide-fed compact microstrip antenna design for applications operating at higher 5G bands was proposed. The antenna with the compact size of 8 x 12.2 mm2 on FR4 substrate, having the dielectric constant of 4.3 and the height of 1.55 mm, was considered. The dimensions of the radiating patch and ground plane were optimized with the use of artificial cooperative search (ACS) algorithm to provide the desired return loss performance of the designed antenna. The performance analysis was done by using full-wave electromagnetic package programs based on the method of moment (MoM) and the finite integration technique (FIT). The 10 dB bandwidth for return loss results obtained with the use of the computation methods show that the proposed antenna performs well for 5G applications operating in the 24.25 – 27.50 GHz, 26.50 – 29.50 GHz, 27.50 – 28.35 GHz and 37 – 40 GHz frequency bands.


2017 ◽  
Vol 9 (7) ◽  
pp. 1541-1545 ◽  
Author(s):  
Rachid Dakir ◽  
Jamal Zbitou ◽  
Ahmed Mouhsen ◽  
Abdelwahed Tribak ◽  
Angel Mediavilla Sanchez ◽  
...  

In this paper, the design of a new compact uniplanar coplanar waveguide-fed antenna for multiband wireless application is presented and investigated. This antenna has a compact size of 25 × 25 mm2 and consists of a three parallel stub optimized added on rectangular slot to the radiator patch and T-shaped which inverted in the ground plane. The final prototype antenna designing resonantes at frequency bands (2.4–2.9 GHz), (3.7–5.2 GHz), and (5.7–6 GHz) with a return loss less than −10 dB. Details of the antenna configuration, design, simulation, and experimental results are presented, investigated, and discussed. The compactness, simple feeding technique, and conception of the uniplanar design make it easy to be integrated within devices of multiples wireless applications.


2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


2019 ◽  
Vol 12 (5) ◽  
pp. 387-397
Author(s):  
Kalyanbrata Ghosh ◽  
Sushrut Das

AbstractIn this paper, two asymmetric co-planar waveguide (ACPW) fed circularly polarized (CP) zeroth-order resonance (ZOR) antennas (Antenna I and II) are presented using a composite right and left-handed transmission line (CRLH-TL) approach. By adding a stub on the left side of the ACPW ground and adjusting its length, circularly polarization property has been achieved in Antenna I. The simulated 3 dB axial ratio bandwidth (ARBW) of Antenna I is 1750 MHz (3.50–5.25 GHz). Next, the left side ground plane of Antenna I is further defected by etching a quarter wavelength slit to introduce a notch band (Antenna II). Antenna II has an extended 10 dB return loss bandwidth of 2200 MHz (3.28–5.48 GHz) with a band notch from 4.18–4.65 GHz that isolates the WiMAX and 5.2 GHz WLAN bands. ARBWs of 1080 and 870 MHz are achieved in the first and second band of Antenna II. The overlapping 3 dB ARBW and 10 dB return loss bandwidths of Antenna II in these two bands are 770 and 830 MHz, respectively.


Author(s):  
Augustine O. Nwajana

This paper presents a step-by-step approach to the design of bandpass/channel filters. The chapter serves as a reference source to microwave stakeholders with little or no filter design experience. It should help them design and implement their first filter device using the microstrip technology. A 3-pole Chebyshev bandpass filter (BPF) with centre frequency of 2.6 GHz, fractional bandwidth of 3%, passband ripple of 0.04321 dB, and return loss of 20 dB has been designed, implemented, and simulated. The designed filter implementation is based on the Rogers RT/Duroid 6010LM substrate with a 10.7 dielectric constant and 1.27 mm thickness. The circuit model and microstrip layout results of the BPF are presented and show good agreement. The microstrip layout simulation results show that a less than 1.8 dB minimum insertion loss and a greater than 25 dB in-band return loss were achieved. The overall device size of the BPF is 18.0 mm by 10.7 mm, which is equivalent to 0.16λg x 0.09λg, where λg is the guided wavelength of the 50 Ohm microstrip line at the filter centre frequency.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. N. Shakib ◽  
M. Moghavvemi ◽  
W. N. L. Mahadi

A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of0.182λ × 0.228λ × 0.018λwhereλis the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size.


2019 ◽  
Vol 29 (02) ◽  
pp. 2050032
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Divitha Seetharamdoo ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

A novel compact coplanar waveguide (CPW)-fed planar monopole antenna with triple-band operation is presented for simultaneously satisfying the LTE 2600, WiMAX, WLAN and X-band applications. It is printed on a single-layered FR4 substrate. In this paper, the proposed antenna, which occupies a small volume of [Formula: see text][Formula: see text]mm3 including the ground plane, is simply composed of a CPW-fed monopole with U-, L- and T-shaped slots. By carefully selecting the lengths and positions of both L-shaped and U-shaped slots, a good dual notched band characteristic at center-rejected frequencies of 3.10[Formula: see text]GHz and 4.50[Formula: see text]GHz can be achieved, respectively. The T-shaped slot is etched on the radiating element to excite a resonant frequency in the 7[Formula: see text]GHz band. Then, to prove the validation of the typical design, a prototype model is fabricated and measured. The experimental result shows that the three frequency bands of 2.31–2.80[Formula: see text]GHz (490[Formula: see text]MHz), 3.37–3.84[Formula: see text]GHz (470[Formula: see text]MHz) and 5.04–7.94[Formula: see text]GHz (2900[Formula: see text]MHz) can successfully cover the desired bandwidths of LTE2600/WiMAX (3.50/5.50[Formula: see text]GHz)/WLAN (5.20/5.80[Formula: see text]GHz) and the X-band communication systems (7.1-GHz operation). The principal applications of the X-band are radar, aircraft, spacecraft and mobile or satellite communication system. Nearly omnidirectional and bidirectional radiation patterns of the triband antenna are observed in both H- and E-planes, respectively. In addition, a reasonable gain over the operating bands has been obtained. Indeed, the good agreements between simulation and measurement results have validated the proposed structure, confirming its potential for multiband wireless communication services.


2014 ◽  
Vol 7 (5) ◽  
pp. 535-542 ◽  
Author(s):  
Geetanjali Singla ◽  
Rajesh Khanna

In this paper, a rotated E-slot antenna with modified coplanar waveguide (CPW) feeding is presented to obtain broadband characteristics. The antenna comprises of a planar rectangular patch element embedded with E-slot rotated 90° anticlockwise on the radiating side. The CPW feed is modified by extending the ground plane throughout the substrate to surround the rectangular patch. This structure is capable of generating three separate resonant modes with good impedance matching. The antenna is designed on an FR4 substrate of 1.6 mm thickness, covering bands from 3.4 to 3.6 GHz for LTE and 3.4–3.694 GHz for worldwide interoperability for microwave access (WiMAX) systems. The proposed antenna provides good return loss S11and impedance behavior.


Sign in / Sign up

Export Citation Format

Share Document