scholarly journals Modelling and optimisation of oxidative desulphurisation of tyre-derived oil via central composite design approach

2019 ◽  
Vol 8 (1) ◽  
pp. 451-463 ◽  
Author(s):  
Peter Tumwet Cherop ◽  
Sammy Lewis Kiambi ◽  
Paul Musonge

Abstract The aim of this study was to apply the central composite design technique to study the interaction of the amount of formic acid (6-12 mL), amount of hydrogen peroxide (6-10 mL), temperature (54-58°C) and reaction time (40-60 min) during the oxidative desulphurisation (ODS) of tyre-derived oil (TDO). The TDO was oxidised at various parametric interactions before being subjected to solvent extraction using acetonitrile. The acetonitrile to oil ratios used during the extraction were 1:1 and 1:2. The content of sulphur before and after desulphurisation was analysed using ICP-AES. The maximum sulphur removal achieved using a 1:1 acetonitrile to oxidised oil ratio was 86.05%, and this was achieved at formic acid amount, hydrogen peroxide amount, temperature and a reaction time of 9 mL, 8 mL, 54°C and 50 min respectively. Analysis of variance (ANOVA) indicated that the reduced cubic model could best predict the sulphur removal for the ODS process. Coefficient of determination (R2 = 0.9776), adjusted R2 = 0.9254, predicted R2 = 0.8356 all indicated that the model was significant. In addition, the p-value of lack of fit (LOF) was 0.8926, an indication of its insignificance relative to pure error.

2016 ◽  
Vol 74 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Salah T. Bouguecha ◽  
Ali Boubakri ◽  
Samir E. Aly ◽  
Mohammad H. Al-Beirutty ◽  
Mohamed M. Hamdi

Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6–63.4°C), permeate temperature (6.6–23.4°C), feed flow rate (199–451L/h) and permeate flow rate (199–451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R2 = 0.9644 and Radj2 = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were Tf = 63.4°C, Tp = 6.6°C, Qf = 451L/h and Qp = 451L/h. Under these conditions, the maximum permeate flux of 6.122kg/m2.h was achieved, which was close to the predicted value of 6.398kg/m2.h.


2015 ◽  
Vol 754-755 ◽  
pp. 1107-1112
Author(s):  
Rozaini Abdullah ◽  
Jumat Salimon ◽  
Anis Atikah Ahmad

The aim of this study was to optimize the monoepoxidation process of linoleic acid obtained from Malaysian Jatropha curcas oil using central composite design (CCD). There were four independent variable factors had been studied which involved reaction temperature (X1), reaction time (X2), catalyst loading (X3) and H2O2 concentration (X4). Thirty experiments were carried out based on the experimental design responses obtained. The results showed that the optimum condition was obtained at catalyst loading of 0.11% (w/w) methyltrioxorhernium (VII) (MTO), H2O2 mole of 99%, reaction temperature of 58.41oC for 5 hours. The central composite design was proven to be simpler method, time saving and required less samples compared to the conventional method.


2010 ◽  
Vol 61 (5) ◽  
pp. 1257-1266 ◽  
Author(s):  
Soraya Mohajeri ◽  
Hamidi Abdul Aziz ◽  
Mohamed Hasnain Isa ◽  
Mohammad Ali Zahed ◽  
Mohammed J. K. Bashir ◽  
...  

In the present study, Electrochemical Oxidation was used to remove COD and color from semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. Experiments were conducted in a batch laboratory-scale system in the presence of NaCl as electrolyte and aluminum electrodes. Central composite design (CCD) under Response surface methodology (RSM) was applied to optimize the electrochemical oxidation process conditions using chemical oxygen demand (COD) and color removals as responses, and the electrolyte concentrations, current density and reaction time as control factors. Analysis of variance (ANOVA) showed good coefficient of determination (R2) values of >0.98, thus ensuring satisfactory fitting of the second-order regression model with the experimental data. In un-optimized condition, maximum removals for COD (48.77%) and color (58.21%) were achieved at current density 80 mA/cm2, electrolyte concentration 3,000 mg/L and reaction time 240 min. While after optimization at current density 75 mA/cm2, electrolyte concentration 2,000 mg/L and reaction time 218 min a maximum of 49.33 and 59.24% removals were observed for COD and color respectively.


2017 ◽  
Vol 19 (4) ◽  
Author(s):  
ABROUKI YOUNES ◽  
ANOUZLA ABDELKADER ◽  
LOUKILI HAYAT ◽  
LOTFI RABIAÂ ◽  
RAYADH AHMED ◽  
...  

The optimization for process production of stainless steel corrosion inhibitor formulated with 1.3-Diphenyl-3-phenylsulfanyl-propan-1-one was studied using a 2 block central composite design including 3 factors (weight of catalyst, reaction time, and quantity of solvent). This process catalyzed by Fluorapatite coupled with their ease of use and reduced environmental problems makes them attractive alternatives to homogeneous basic reagents.


2019 ◽  
Vol 4 (9) ◽  
pp. 149-152
Author(s):  
Andrew Ozigagun ◽  
Raphael Biu

Welding is a multi-input multi-output fabrication process, which requires a multi-response optimization technique. In this present work, the effect of heat affected zone and percentage dilution on the quality of Tungsten Inert Gas welded joints was investigated using mild steel plates. The Central Composite Design matrix was adopted to perform the welding experiment and collect the data, thereafter Response Surface Methodology (RSM) models was employed to minimize heat affected zone and percentage dilution with very significant statistical results. The result shows that the quadratic model was the most suitable for the HAZ data and the percentage dilution data with a P-value < 0.05 and R2 value of 88% and 90% for the HAZ and percentage dilution respectively.


Author(s):  
Marwa E. El-Sesy ◽  
Sabah S. Ibrahim

Abstract High Nitrate concentration represented as one dangerous pollutant in the environment. Immobilization for the best denitrifying bacterial strain isolated from collected wastewater samples was suggested for bioremediation excessive nitrate concentration from aqueous solutions and explored its denitrification activity under different factors as (pH, nitrate concentration, bacterial beads, Temp and sodium alginate concentration). The active isolate was identified as Pseudomonas putida MT364822.1 by 16S rRNA analysis. Nitrate bioremediation process was optimized by apply response surface method based on central composite design approach. Nitrate uptake was significantly affected by variables of study (p-value &lt;0.05). Maximum removal of nitrate 91.1% was obtained from pH 7, nitrate concentration 400 mg/L, immobilized bacterial beads 3.0 g/L, Temp 35 °C and sodium alginate concentration 2.5% as optimal variable values. For application, immobilized Pseudomonas putida MT364822.1 removed nitrate with 82.2% from raw fish farm effluent. Storage and reusability experiments showed the strength and stability of immobilized strain more than pure. The results suggested that, immobilized Pseudomonas putida MT364822.1 is a highly promising and suitable microorganism to be used in bio-removal of nitrate and central composite design was more effective in optimization variables to obtain the highest nitrate removal efficiency.


2012 ◽  
Vol 77 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Mahsa Azami ◽  
Morteza Bahram ◽  
Sirous Nouri ◽  
Abdolhosein Naseri

In this study the degradation of Methyl Orange, using Fenton reaction was studied and optimized using central composite design as a response surface methodology. The effects of various experimental parameters in this reaction were investigated using central composite design. 28 experiments, with 4 factors and 5 levels for each factor were designed. These factors (or variables) were: initial concentration of Fe (II), initial concentration of H2O2, initial concentration of oxalate and the reaction time. A full-quadratic polynomial equation between the percentage of dye degradation (as a response) and the studied parameters was established. After removing the non-significant variables from the model, response surface method was used to obtain the optimum conditions. The optimum ranges of variables were: 0.25 - 0.35 mM for initial concentration of Fe (II), 5-17 mM for initial concentration of H2O2, 4-9 mM for initial concentration of oxalate, and 50-80 min for the reaction time. Also the results of extra experiments showed that these optimized values can be used for real samples and yield to a high value for the response.


2021 ◽  
Author(s):  
Niloufar Torabi Fard ◽  
Fariba Tadayon ◽  
Homayon Ahmad Panahi ◽  
Elham Moniri

Abstract The present study examined the direct esterification of terephthalic acid (TPA) with allyl alcohol (AA) on the graphene oxide (GO) surface in the presence of p-toluene sulfonic acid (PTSA) catalyst. Then, the surface of GO-TPAA was modified through polymerization reaction with 2,2’-azobisisobutyronitrile (AIBN) as a reaction initiator. The developed polymer was tested successfully as a nanocarrier for the metronidazole (MNZ) drug delivery. The resulting polymer was characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-Ray (EDX), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The parameters were optimized by response surface methodology (RSM) based on the central composite design (CCD) experimental design. The maximum adsorption (93.31%) was obtained at pH = 5, contact time of 15 min, and MNZ concentration of 15 mg L− 1. Analysis of variance (ANOVA) study proposed that the obtained equation for the adsorption of the MNZ is quadratic and it is significant for the model. The drug release behavior indicated that the amount of MNZ release from nanocarrier was significantly pH dependent. The released data were fitted into different kinetic release model equations for determining the best-fit release model for the nanocarrier. The adsorption kinetic data best fitted the pseudo-second-order model with a coefficient of determination (R2) of 0.9999. The adsorption process was endothermic, following the Langmuir isotherm model (R2 = 0.9956). MNZ release was studied in vitro using stimulated gastric fluid and stimulated intestinal fluid. The proposed nanoadsorbent can be useful for the rapid and efficient adsorption of the drug.


2020 ◽  
Vol 82 (7) ◽  
pp. 1404-1415 ◽  
Author(s):  
Karima Dibene ◽  
Idris Yahiaoui ◽  
Lamia Yahia Cherif ◽  
Salima Aitali ◽  
Abdeltif Amrane ◽  
...  

Abstract In this study, peroxydisulfate (PDS) was successfully activated by UV-irradiation for the degradation of paracetamol (PCT) frequently detected in the environment. Results showed that increasing the initial PDS concentration from 5 to 20 mM promote the removal of PCT from 49.3% to 97.5% after 240 min of reaction time. As the initial PCT concentration increased from 0.066 to 0.132 mM, the degradation efficiency of PCT decreased from 98% to 73% after 240 min of reaction time, while the optimal pH was found to be 6. It is apparent that the degradation rate of PCT was favored by the lamp power regardless of the initial PCT concentration, for 0.132 mM of PCT, the degradation efficiency increased from 73% to 95% when the lamp power increased from 9 to 30 W, respectively. The kinetic of degradation of the PCT was described by a pseudo-second order kinetic model. The model obtained by central composite design led to the following optimal conditions for PCT degradation: 0.132 mM initial PCT concentration, 20 mM PDS dose, pH solution 6 and lamp power 30 W led to the removal of 92% of PCT at 25 °C within 240 min of reaction time.


2014 ◽  
Vol 628 ◽  
pp. 338-341
Author(s):  
Wen Ying Shi ◽  
Hong Bin Li ◽  
Rong Zhou

A sulfonated polyethersulfone (SPES)/polyethersulfone (PES) blend catalytic membrane was prepared and used as a heterogeneous catalyst in the esterification of oleic acid with methanol for producing biodiesel. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the three important reaction variables methanol/oleic acid mass ratio, catalytic membrane loading and reaction time for the esterification by SPES/PES blend catalytic membrane. The optimum condition for the esterification was as follows: methanol/oleic acid mass ratio 1:1, catalytic membrane loading 1.66 meq/g, reaction time 6 h. The optimum predicted fatty acid methyl ester (FAME) yield was 97.44% and the actual value was 98.64%. The above results shows that the RSM study based on CCD is adaptable for FAME yield studied for the current esterification system.


Sign in / Sign up

Export Citation Format

Share Document