scholarly journals Paracetamol degradation by photo-activated peroxydisulfate process (UV/PDS): kinetic study and optimization using central composite design

2020 ◽  
Vol 82 (7) ◽  
pp. 1404-1415 ◽  
Author(s):  
Karima Dibene ◽  
Idris Yahiaoui ◽  
Lamia Yahia Cherif ◽  
Salima Aitali ◽  
Abdeltif Amrane ◽  
...  

Abstract In this study, peroxydisulfate (PDS) was successfully activated by UV-irradiation for the degradation of paracetamol (PCT) frequently detected in the environment. Results showed that increasing the initial PDS concentration from 5 to 20 mM promote the removal of PCT from 49.3% to 97.5% after 240 min of reaction time. As the initial PCT concentration increased from 0.066 to 0.132 mM, the degradation efficiency of PCT decreased from 98% to 73% after 240 min of reaction time, while the optimal pH was found to be 6. It is apparent that the degradation rate of PCT was favored by the lamp power regardless of the initial PCT concentration, for 0.132 mM of PCT, the degradation efficiency increased from 73% to 95% when the lamp power increased from 9 to 30 W, respectively. The kinetic of degradation of the PCT was described by a pseudo-second order kinetic model. The model obtained by central composite design led to the following optimal conditions for PCT degradation: 0.132 mM initial PCT concentration, 20 mM PDS dose, pH solution 6 and lamp power 30 W led to the removal of 92% of PCT at 25 °C within 240 min of reaction time.

2021 ◽  
Vol 12 (1) ◽  
pp. 326-338

In this study, the retention of BB41 and SAF was studied using a PBD three-level screening plan, as the initial concentration of dyes, BBP mass, pH, and temperature. Pareto analysis to select the pH and the adsorbent mass as influential factors to make a CCD optimization plan, the optimization has established a quadratic mathematical model for each dye. The binary system's common optimal conditions were selected to be a BBP mass of 0.46 g/l and a pH of 8.54. Under optimal conditions, the removal efficiency of BB41 and SAF is 83.76 and 73.23%, respectively, with the desirability of 1.00, which is confirmed by a later experiment. The equilibrium adsorption data of BB41 and SAF in the mixture are well explained by the Langmuir isotherm with an adsorption capacity of 75.18 and 80.64 mg/g, respectively. A good fit of the experimental data according to the pseudo-second-order kinetic model, with a correlation coefficient R2> 0.99. Finally, Bombax buonopozense (BBP) was characterized using FTIR, SEM and elemental analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Li Yu ◽  
Yongkui Huang ◽  
Yun Yang ◽  
Yulin Xu ◽  
Guohong Wang ◽  
...  

H4SiW6Mo6O40/SiO2was sensitized by H2O2solution that significantly improved its catalytic activity under simulated natural light. Degradation of basic fuchsin was used as a probe reaction to explore the influencing factors on the photodegradation reaction. The results showed that the optimal conditions were as follows: initial concentration of basic fuchsin 8 mg/L, pH 2.5, catalyst dosage 4 g/L, and light irradiation time 4 h. Under these conditions, the degradation rate of basic fuchsin is 98%. The reaction of photocatalysis for basic fuchsin can be expressed as the first-order kinetic model. After being used continuously for four times, the catalyst kept the inherent photocatalytic activity for degradation of dyes. The photodegradation of malachite green, methyl orange, methylene blue, and rhodamine B were also tested, and the degradation rate of dyes can reach 90%–98%.


2013 ◽  
Vol 842 ◽  
pp. 175-179
Author(s):  
Liang Jia ◽  
Jing Song Wang ◽  
Qing Wei Guo ◽  
Xiao Liang Zou ◽  
Lei Xie

This paper aims to investigate the adsorption of Cr (VI) by cross-linked magnetic hydroxamated chitosan (MHCTS). The adsorption experiments were carried out in batch systems. To determine the optimum condition of the adsorption, factors such as pH, reaction time, initial Cr (VI) concentration and adsorbent dosage were considered. The experimental results showed that MHCTS can adsorb Cr (VI) with high efficiency. Optimum adsorption was observed at pH 4.0, and the highest adsorption removal reached 99.2%. The equilibrium was established within 90 min. The process could be described by pseudo-first-order and pseudo-second-order kinetic model.


1970 ◽  
Vol 23 ◽  
pp. 102-105 ◽  
Author(s):  
Puspa Lal Homagai ◽  
Hari Paudyal

Saponified apple waste gel was prepared in wet condition with calcium hydroxide at highly alkaline medium. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was investigated for Fe(III), Cd(II), Zn(II) and Pb(II) at their optimal pH of 3, 6, 4.5 and 3.5 respectively. Langmuir isotherm and pseudo second-order kinetic model gave better explanation of the adsorption process. For binary mixture of Zn(II) and Cd(II), the separation factor and effect on adsorption capacity for both the metals were investigated.Keywords: adsorption, saponified apple waste, bioadsorption.DOI: 10.3126/jncs.v23i0.2103Journal of Nepal Chemical Society, Vol. 23, 2008/2009 Page: 102-105


2016 ◽  
pp. 39-48
Author(s):  
Pathompong Vibhatabandhu ◽  
Sarawut Srithongouthai

Biosorptionis an effective process for removal and recovery of heavy metal ions from aqueous solutions. In the present study, batch adsorption experiments were carried out for the removal of copper (Cu II) from aqueous solutions using cuttlebone powder (<100 μm)as a bio-adsorbent. The effects of initial pH, adsorbent dosage, initial concentration, and contact time on adsorption efficiency and capacity were studied to evaluate the optimum conditions for copper removal.The results found optimal conditions at initial pH of 5.0, 10 g L-1cuttlebone, 500 mg L-1initial concentration of Cu II in solution, and 150 min of equilibrium time.The Langmuir isotherm and pseudo-second order kinetic model were fitted to the experimental adsorption data. The maxi-mum adsorption capacity calculated from theLangmuir isotherm was 54.05 mg g-1. This result shows that cuttlebone is an effective bio-adsorbent, constituting a promising, efficient, low-cost, and eco-friendly technology bio-sorbent for reducing copper pollution during wastewater treatment.


2018 ◽  
Vol 21 (8) ◽  
pp. 583-593 ◽  
Author(s):  
Sara Rahnama ◽  
Shahab Shariati ◽  
Faten Divsar

Objective: In this research, a novel magnetite titanium dioxide nanocomposite functionalized by amine groups (Fe3O4@SiO2@TiO2-NH2) was synthesized and its ability for efficient removal of Acid Fuchsine as an anionic dye from aqueous solutions was investigated. Method: The core-shell structure of Fe3O4@SiO2@TiO2 was prepared using Fe3O4 as magnetic core, tetra ethyl orthosilicate as silica and tetra butyl titanate as titanium source for shell. The synthesized nanocomposites (particle size lower than 44 nm) were characterized by FT-IR, XRD, DRS, SEM and TGA instruments. The various experimental parameters affecting dye removal efficiency were investigated and optimized using Taguchi fractional factorial design. Results: The synthesized adsorbent showed the highest removal efficiency of Acid Fuchsine (99 %) at pH= 3.5, without salt addition and during stirring at contact times less than 10 minutes. The study of kinetic models at two concentration levels showed the fast dye sorption on the surface of proposed nanocomposites with pseudo second order kinetic model (R2=1). Also, the fitting of Acid Fuchsine sorption data to Freundlich, Langmuir and Temkin isotherms suggested that Freundlich model gave a better fitting than other models (R2=0.9936, n=2). Conclusion: Good chemical stability, excellent magnetic properties, very fast adsorption kinetics and high removal efficiency make the synthesized nanocomposite as a proper recoverable sorbent for removal of Acid Fuchsine dye from wastewaters.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1615
Author(s):  
Thanh Tam Nguyen ◽  
Hung-Hsiang Chen ◽  
Thi Hien To ◽  
Yu-Chen Chang ◽  
Cheng-Kuo Tsai ◽  
...  

Adsorbent made by carbonization of biomass under oxygen-limited conditions has become a promising material for wastewater treatment owing to its cost-effective, simple, and eco-friendly processing method. Ultrasound is considered a green technique to modify carbon materials because it uses water as the solvent. In this study, a comparison of Reactive Black 5 (RB5) adsorption capacity between biochar (BC) generated by pyrolysis of water bamboo (Zizania latifolia) husks at 600 °C and ultrasound-assisted biochar (UBC) produced by pyrolysis at 600 °C assisted by ultrasonic irradiation was performed. UBC showed a greater reaction rate and reached about 80% removal efficiency after 4 h, while it took 24 h for BC to reach that level. Scanning electron microscope (SEM) images indicated that the UBC morphology surface was more porous, with the structure of the combination of denser mesopores enhancing physiochemical properties of UBC. By Brunauer, Emmett, and Teller (BET), the specific surface areas of adsorbent materials were analyzed, and the surface areas of BC and UBC were 56.296 m2/g and 141.213 m2/g, respectively. Moreover, the pore volume of UBC was 0.039 cm3/g, which was higher than that of BC at 0.013 cm3/g. The adsorption isotherms and kinetics revealed the better fits of reactions to Langmuir isotherm and pseudo-second-order kinetic model, indicating the inclination towards monolayer adsorption and chemisorption of RB5 on water bamboo husk-based UBC.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


Sign in / Sign up

Export Citation Format

Share Document