Thermal conductivity of untreated and chemically treated poplar bark and wood

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oliver Vay ◽  
María Busquets-Ferrer ◽  
Gerhard Emsenhuber ◽  
Christian Huber ◽  
Wolfgang Gindl-Altmutter ◽  
...  

Abstract The thermal insulation properties of bark and wood of a poplar tree (Populus nigra × alba) were investigated using a guarded hot plate device (GHP) and a purpose-built miniature heat flow meter (Mini-HFM). To reduce their density and improve their performance as insulation material, bark and wood were chemically treated. The correlation between thermal conductivity and test temperature as well as between thermal conductivity and material moisture was investigated. By means of the treatment 44 and 34% of the mass of bark and wood, respectively, was removed and the equilibrium moisture content of the both materials decreased significantly. For untreated bark, a thermal conductivity of 0.071 Wm−1 K−1 and 0.140 Wm−1 K−1, respectively, were determined in transverse and axial direction. For wood, measurements showed comparably higher conductivities of 0.078 Wm−1 K−1 and 0.204 Wm−1 K−1 in transverse and axial direction. By reducing density, thermal conductivity of bark decreased up to 24%, whereas for wood reductions between 10 and 35% were found. It was shown that the self-constructed Mini-HFM is a useful and reliable instrument to determine the thermal conductivity on a small wood sample in the three main anatomical directions.

Author(s):  
Gabriel Souza ◽  
Luís Felipe dos Santos Carollo ◽  
Sandro Metrevelle Marcondes de Lima e Silva

2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


MRS Advances ◽  
2020 ◽  
Vol 5 (10) ◽  
pp. 481-487 ◽  
Author(s):  
Norifusa Satoh ◽  
Masaji Otsuka ◽  
Yasuaki Sakurai ◽  
Takeshi Asami ◽  
Yoshitsugu Goto ◽  
...  

ABSTRACTWe examined a working hypothesis of sticky thermoelectric (TE) materials, which is inversely designed to mass-produce flexible TE sheets with lamination or roll-to-roll processes without electric conductive adhesives. Herein, we prepared p-type and n-type sticky TE materials via mixing antimony and bismuth powders with low-volatilizable organic solvents to achieve a low thermal conductivity. Since the sticky TE materials are additionally injected into punched polymer sheets to contact with the upper and bottom electrodes in the fabrication process, the sticky TE modules of ca. 2.4 mm in thickness maintained temperature differences of ca. 10°C and 40°C on a hot plate of 40 °C and 120°C under a natural-air cooling condition with a fin. In the single-cell resistance analysis, we found that 75∼150-µm bismuth powder shows lower resistance than the smaller-sized one due to the fewer number of particle-particle interfaces in the electric pass between the upper and bottom electrodes. After adjusting the printed wiring pattern for the upper and bottom electrodes, we achieved 42 mV on a hot plate (120°C) with the 6 x 6 module having 212 Ω in the total resistance. In addition to the possibility of mass production at a reasonable cost, the sticky TE materials provide a low thermal conductivity for flexible TE modules to capture low-temperature waste heat under natural-air cooling conditions with fins for the purpose of energy harvesting.


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


2007 ◽  
Vol 546-549 ◽  
pp. 1581-1584 ◽  
Author(s):  
Jiu Peng Zhao ◽  
Deng Teng Ge ◽  
Sai Lei Zhang ◽  
Xi Long Wei

Silica aerogel/epoxy composite, a kind of efficient thermal insulation material, was prepared by doping silica aerogel of different sizes into epoxy resin through thermocuring process. The results of thermal experiments showed that silica aerogel/epoxy composite had a lower thermal conductivity (0.105W/(m·k) at 60 wt% silica aerogel) and higher serviceability temperature (Martens heat distortion temperature: 160°C at 20 wt% silica aerogel). In addition, the composite doping larger size (0.2-2mm) of silica aerogel particle had lower thermal conductivity and higher Martens heat distortion temperature. Based on the results of SEM and FT-IR, the thermal transfer model was established. Thermal transfer mechanism and the reasons of higher Martens heat distortion temperature have been discussed respectively.


1991 ◽  
Vol 113 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Xuemei Bai ◽  
David E. Pegg

The self-heated thermistor technique was used to measure the thermal conductivity and thermal diffusivity of biomaterials at low temperatures. Thermal standards were selected to calibrate the system at temperatures from −10°C to −70°C. The thermal probes were constructed with a convection barrier which eliminates convection inside liquid samples of low viscosity, without affecting the conductivity and diffusivity results. Using this technique, the thermal conductivity and diffusivity of two organ perfusates (HP5 and HP5 + 2M glycerol), one kidney phantom (a low ionic strength gel), as well as rabbit kidney cortex have been measured from −10°C to −70°C.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


2008 ◽  
Vol 57 (4) ◽  
pp. 270-275 ◽  
Author(s):  
Cristina Lasaitis ◽  
Rafaela Larsen Ribeiro ◽  
Orlando Francisco Amodeo Bueno

OBJECTIVE: The study presents the Brazilian norms for 240 new stimuli from International Affective Picture System (IAPS), a database of affective images widely used in research, compared to the North-American normative ratings. METHODS: The participants were 448 Brazilian university students from several courses (269 women and 179 men) with mean age of 24.2 (SD = 7.8), that evaluated the IAPS pictures in the valence, arousal and dominance dimensions by the Self-Assessment Manikin (SAM) scales. Data were compared across the populations by Pearson linear correlation and Student's t-tests. RESULTS: Correlations were highly significant for all dimensions; however, Brazilians' averages for arousal were higher than North-Americans'. CONCLUSIONS: The results show stability in relation to the first part of the Brazilian standardization and they are also consistent with the North-American standards, despite minor differences relating to interpretation of the arousal dimension, demonstrating that IAPS is a reliable instrument for experimental studies in the Brazilian population.


2014 ◽  
Vol 5 (2) ◽  
pp. 22-28
Author(s):  
S.H. Ibrahim ◽  
Sia W.K. ◽  
A. Baharun ◽  
M.N.M. Nawi ◽  
R. Affandi

 Energy consumption for residential use in Malaysia is keep increasing yearly in order to maintain the internal thermal comfort of the building. Roof insulation material plays a vital role in improving the thermal comforts of the building while reduce the cooling load of the building. Oil palm industry in Malaysia had grown aggressively over the past few decades. Tons of oil palm waste had produced during the process such as empty fruit bunch fiber. Another waste material that available and easy to obtain is paper. Paper is a valuable material that can be recycled. Waste paper comes from different sources such as newspaper, office and printing papers. This study will take advantage of the available resources which could contribute to reduce the environment impact. The aim of this study is to investigate the thermal performance of roof insulation materials using mixture of oil palm fiber and paper pulp with different ratio and thickness. This study found that the thermal performance of the paper pulp is slightly better compare to the oil palm fiber. Thermal conductivity of the particle board reduces around 4.1% by adding the 10% of paper pulp into the total density of the particle board. By adding 75% of paper pulp, the thermal conductivity of the particle board could be reduced to 24.6% compare to the oil palm fiber board under the similar condition. Therefore, from this study, it could be concluded that paper pulp has high potential to be used as a building insulation material.


Sign in / Sign up

Export Citation Format

Share Document