Mechanical properties and creep behavior of lyocell fibers by nanoindentation and nano-tensile testing

Holzforschung ◽  
2007 ◽  
Vol 61 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Seung-Hwan Lee ◽  
Siqun Wang ◽  
George M. Pharr ◽  
Matthew Kant ◽  
Dayakar Penumadu

Abstract Mechanical and time-dependent mechanical properties of lyocell fibers have been investigated as a function of depth at a nano-scale level in longitudinal and transverse directions. The nanoindentation technique was applied and extended to continuous stiffness measurement. Lyo10 and Lyo13 lyocell fibers were investigated. The individual fiber properties were measured using a nano-tensile testing system to obtain reference data for mechanical properties. The hardness and elastic modulus obtained from nanoindentation test are described using two different approaches. The first uses mean values for a depth of 150–300 nm, while the second uses unloading values at the final indentation depth. There is no significant difference between modulus values inferred from nanoindentation and those obtained from single fiber tensile testing. Hardness and elastic modulus values were higher in the longitudinal direction than those in the transverse direction and Lyo13 values were higher than those for Lyo10 in both directions. The time-dependent mechanical properties were also investigated as a function of the holding time. Increasing the holding time led to an increase in indentation displacement and a decrease in hardness. Stress exponents were calculated from the linear relationship between contact stress and contact strain using a power-law creep equation.

2000 ◽  
Vol 649 ◽  
Author(s):  
G. Feng ◽  
A.H.W. Ngan

ABSTRACTDuring the unloading segment of nanoindentation, time dependent displacement (TDD) accompanies elastic deformation. Consequently the modulus calculated by the Oliver-Pharr scheme can be overestimated. In this paper we present evidences for the influence of the measured modulus by TDD. A modification method is also presented to correct for the effects of TDD by extrapolating the TDD law in the holding process to the beginning of the unloading process. Using this method, the appropriate holding time and unloading rate can be estimated for nanoindentation test to minimise the effects of TDD. The elastic moduli of three materials computed by the modification method are compared with the results without considering the TDD effects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Man Lei ◽  
Fa-ning Dang ◽  
Haibin Xue ◽  
Mingming He

In order to study the mechanical properties of granite at the micro- and nanoscale, the load-displacement curve, residual indentation information, and component information of the quartz, feldspar, and mica in granite were obtained using a nanoindentation test, a scanning electron microscope (SEM), and X-ray diffraction (XRD). The elastic modulus and the hardness of each component of the granite were obtained through statistical analysis. Treating rock as a composite material, the relation between the macro- and microscopic mechanical properties of rock was established through the theory of micromechanical homogenization. The transition from micromechanical parameters to macromechanical parameters was realized. The equivalent elastic modulus and Poisson’s ratio of the granite were obtained by the Self-consistent method, the Dilute method, and the Mori-Tanaka method. Compared with the elastic modulus and the Poisson ratio of granites measured by a uniaxial compression test and the available data, the applicability of the three methods were analyzed. The results show that the elastic modulus and hardness of the quartz in the granite is the largest, the feldspar is the second, the mica is the smallest. The main mineral contents in granite were analyzed using the semiquantitative method by XRD and the rock slice identification test. The elastic modulus and the Poisson ratio of granite calculated by three linear homogenization methods are consistent with those of the uniaxial compression test. After comparing the calculation results of the three methods, it is found that the Mori-Tanaka method is more suitable for studying the mechanical properties of rock materials. This method has an important theoretical significance and practical value for studying the quantitative relationship between macro- and micromechanical indexes of brittle materials. The research results provide a new method and an important reference for studying the macro-, micro-, and nanomechanical properties of rock.


Author(s):  
Xingjian Wei ◽  
Abhinav Bhardwaj ◽  
Chin-Cheng Shih ◽  
Li Zeng ◽  
Bruce Tai ◽  
...  

Abstract The J750 PolyJet printer is the newest model of full-color, multi-material 3D printer from Stratasys. Currently, limited information is available about the effects of control factors on mechanical properties such as elastic modulus, ultimate tensile strength, and elongation. In this study, the effects of two control factors, orientation and layer thickness, on mechanical properties of samples printed by the Stratasys J750 printer are investigated. The results show that orientation significantly affects mechanical properties. Specifically, samples printed with its axial direction parallel to the direction of printing have the highest elastic modulus, and elongation, whereas samples printed with its axial direction perpendicular to the direction of printing have the highest ultimate tensile strength. Also, layer thickness makes a significant difference for mechanical properties, and larger layer thickness leads to higher ultimate tensile strength and elongation. These results would be valuable to researchers and practitioners who use J750.


2019 ◽  
Vol 45 (4) ◽  
pp. 387-395
Author(s):  
AA Abdulmajeed ◽  
TE Donovan ◽  
R Cook ◽  
TA Sulaiman

Clinical Relevance Bulk-fill composite resins may have comparable mechanical properties to conventional composite resin. Preheating does not reduce the mechanical properties of composite resins. SUMMARY Statement of Problem: Bulk-fill composite resins are increasingly used for direct restorations. Preheating high-viscosity versions of these composites has been advocated to increase flowability and adaptability. It is not known what changes preheating may cause on the mechanical properties of these composite resins. Moreover, the mechanical properties of these composites after mastication simulation is lacking. Purpose: The purpose of this study was to evaluate the effect of fatiguing and preheating on the mechanical properties of bulk-fill composite resin in comparison to its conventional counterpart. Methods and Materials: One hundred eighty specimens of Filtek One Bulk Fill Restorative (FOBR; Bulk-Fill, 3M ESPE) and Filtek Supreme Ultra (FSU; Conventional, 3M ESPE) were prepared for each of the following tests: fracture toughness (International Organization for Standardization, ISO 6872), diametral tensile strength (No. 27 of ANSI/ADA), flexural strength, and elastic modulus (ISO Standard 4049). Specimens in the preheated group were heated to 68°C for 10 minutes and in the fatiguing group were cyclically loaded and thermocycled for 600,000 cycles and then tested. Two-/one-way analysis of variance followed by Tukey Honest Significant Difference (HSD) post hoc test was used to analyze data for statistical significance (α=0.05). Results: Preheating and fatiguing had a significant effect on the properties of both FSU and FOBR. Fracture toughness increased for FOBR specimens when preheated and decreased when fatigued (p=0.016). FOBR had higher fracture toughness value than FSU. Diametral tensile strength decreased significantly after fatiguing for FSU (p=0.0001). FOBR had a lower diametral tensile strength baseline value compared with FSU (p=0.004). Fatiguing significantly reduced the flexural strength of both FSU and FOBR (p=0.011). Preheating had no effect on the flexural strength of either FSU or FOBR. Preheating and fatiguing significantly decreased the elastic modulus of both composite resins equally (p>0.05). Conclusions: Preheating and fatiguing influenced the mechanical properties of composite resins. Both composites displayed similar mechanical properties. Preheating did not yield a major negative effect on their mechanical properties; the clinical implications are yet to be determined.


2004 ◽  
Vol 841 ◽  
Author(s):  
B. Kavukcuoglu ◽  
C. West ◽  
D. T. Denhardt ◽  
A. B. Mann

ABSTRACTOsteopontin (OPN), a phosphorylated glycoprotein, is among the most abundant non-collageneous bone matrix proteins produced by osteoblasts and osteoclasts. OPN has been implicated in bone formation, resorption and remodeling. However, previous studies have presented contradictory results regarding the effect of OPN on the mechanics and microstructure of bone. This study has used nanoindentation to identify local variations in elastic modulus and hardness of OPN deficient (OPN -/-) and wild-type control (OPN+/+) mouse bones. Specifically, the study has looked at changes in the mechanical properties of OPN-/- and OPN+/+ mouse bones with the mouse's age. Cortical sections of femurs from different age groups ranging from 3 weeks to 58 weeks were tested and compared. The results suggest that there are large, abrupt variations in mechanical properties across the femur's radial section for 3-week-old mouse bone. The hardness (H) drops significantly towards the inner and outer sections so the cortical bone has a mean H=3.66 GPa with a standard deviation of 2.44 GPa. In contrast, the hardness of the 58-week-old mouse bone had a standard deviation of 0.35 GPa and a mean H=1.45 GPa. The hardness across the radial axis of the 58-week-old bone was found to be quite uniform. The elastic modulus showed similar variations to the hardness with respect to age and position on the bone. We conclude that the mechanical properties of the mouse bones decrease substantially with maturity, and statistically the hardness and elastic modulus are more uniform in mature bones than young ones. Surprisingly we found a similar variation in both OPN-/- and OPN+/+ bones, with no statistically significant difference in the mechanical properties of the OPN -/- and OPN+/+ bones. The results for OPN-/- and OPN+/+ mouse bones are particularly important as control of OPN activity has been postulated as a potential treatment for bone pathologies that exhibit a change in the bone mineralization, such as osteoporosis, osteopetrosis and Paget's disease. Understanding the effects of OPN on bone mechanics is a vital step in the development of these new treatments.


2004 ◽  
Vol 844 ◽  
Author(s):  
B. Kavukcuoglu ◽  
C. West ◽  
D.T. Denhardt ◽  
A. B. Mann

ABSTRACTOsteopontin (OPN), a phosphorylated glycoprotein, is among the most abundant non-collageneous bone matrix proteins produced by osteoblasts and osteoclasts. OPN has been implicated in bone formation, resorption and remodeling. However, previous studies have presented contradictory results regarding the effect of OPN on the mechanics and microstructure of bone. This study has used nanoindentation to identify local variations in elastic modulus and hardness of OPN deficient (OPN -/-) and wild-type control (OPN+/+) mouse bones. Specifically, the study has looked at changes in the mechanical properties of OPN-/- and OPN+/+ mouse bones with the mouse's age. Cortical sections of femurs from different age groups ranging from 3 weeks to 58 weeks were tested and compared. The results suggest that there are large, abrupt variations in mechanical properties across the femur's radial section for 3-week-old mouse bone. The hardness (H) drops significantly towards the inner and outer sections so the cortical bone has a mean H=3.66 GPa with a standard deviation of 2.44 GPa. In contrast, the hardness of the 58-week-old mouse bone had a standard deviation of 0.35 GPa and a mean H=1.45 GPa. The hardness across the radial axis of the 58-week-old bone was found to be quite uniform. The elastic modulus showed similar variations to the hardness with respect to age and position on the bone. We conclude that the mechanical properties of the mouse bones decrease substantially with maturity, and statistically the hardness and elastic modulus are more uniform in mature bones than young ones. Surprisingly we found a similar variation in both OPN-/- and OPN+/+ bones, with no statistically significant difference in the mechanical properties of the OPN -/- and OPN+/+ bones. The results for OPN-/- and OPN+/+ mouse bones are particularly important as control of OPN activity has been postulated as a potential treatment for bone pathologies that exhibit a change in the bone mineralization, such as osteoporosis, osteopetrosis and Paget's disease. Understanding the effects of OPN on bone mechanics is a vital step in the development of these new treatments.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shuting Zhang ◽  
Yihui Weng ◽  
Chunhua Ma

AbstractElastomeric nanostructures are normally expected to fulfill an explicit mechanical role and therefore their mechanical properties are pivotal to affect material performance. Their versatile applications demand a thorough understanding of the mechanical properties. In particular, the time dependent mechanical response of low-density polyolefin (LDPE) has not been fully elucidated. Here, utilizing state-of-the-art PeakForce quantitative nanomechanical mapping jointly with force volume and fast force volume, the elastic moduli of LDPE samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 up to 2 k Hz. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young’s modulus was discovered with increasing acquisition frequency. It was measured 11.7 ± 5.2 MPa at 0.1 Hz and increased to 89.6 ± 17.3 MPa at 2 kHz. Moreover, creep compliance experiment showed that instantaneous elastic modulus E1, delayed elastic modulus E2, viscosity η, retardation time τ were 22.3 ± 3.5 MPa, 43.3 ± 4.8 MPa, 38.7 ± 5.6 MPa s and 0.89 ± 0.22 s, respectively. The multiparametric, multifunctional local probing of mechanical measurement along with exceptional high spatial resolution imaging open new opportunities for quantitative nanomechanical mapping of soft polymers, and can potentially be extended to biological systems.


2021 ◽  
Author(s):  
Tito Adibaskoro ◽  
Michalina Makowska ◽  
Aleksi Rinta-Paavola ◽  
Stefania Fortino ◽  
Simo Hostikka

AbstractThe orthotropic and temperature-dependent nature of the mechanical properties of wood is well recognized. However, past studies of mechanical properties at elevated temperatures are either limited to temperatures below 200 °C or focus only on the direction parallel to grain. The effect of time-dependent pyrolysis during measurement is often neglected. This paper presents a novel method for determining elastic modulus at high temperatures and thermal expansion coefficient in different orthotropic directions via Dynamic Mechanical-Thermal Analyser (DMTA). The method allows for drying, drying verification, and measurement in one chamber, eliminating the possibility of moisture reabsorption from ambient air. The repeatable measurements can be carried out in temperatures up to 325°C, adequate for observing time-dependent pyrolysis during measurement. Results of the measurements of Norway Spruce provide data of its mechanical response at temperature range previously not explored widely, as well as in the orthotropic direction. Time-dependent behaviour was observed in the thermal expansion and shrinkage experiment, where above 250°C the amount of shrinkage depends on heating rate. At such temperature, elastic moduli measurement also shows time dependence, where longer heating at certain temperature slightly increases the measured elastic modulus. Additionally, bilinear regression of the relationship between elastic moduli and temperature shows quantitatively good fit. Numerical simulation of the DMTA temperature history and wood chemical components mass losses show the onset of shrinkage and onset of hemicellulose mass loss occurring at around the same time, while decomposition of cellulose correlate with the sudden loss of elastic moduli.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4457-4463
Author(s):  
Man Lei ◽  
Fa-Ning Dang ◽  
Hai-Bin Xue ◽  
Zhang Yu ◽  
Ming-Ming He

In this paper, the nanoscale mechanical properties of quartz, feldspar, and mica in granite are studied by the nanoindentation technique. Firstly, the surface morphol?ogy of each mineral composition in granite is obtained by a SEM. Secondly, the elastic modulus and hardness of three minerals in granite are calculated through the load-displacement curve obtained by the nanoindentation test. Based on the energy analysis method, the nanometer fracture toughness of three minerals in granite is obtained. Finally, the correlation between the elastic modulus, the hard?ness, and the fracture toughness are obtained by experimental data.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5581
Author(s):  
Xuhang Zang ◽  
Pinghua Zhu ◽  
Chunhong Chen ◽  
Xiancui Yan ◽  
Xinjie Wang

In this study, the shrinkage performance of recycled aggregate thermal insulation concrete (RATIC) with added glazed hollow beads (GHB) was investigated and a time-dependent shrinkage model was proposed. Two types of recycled fine aggregate (RFA) were used to replace natural fine aggregate in RATIC: RFA from waste concrete (RFA1) and waste clay brick (RFA2). Besides, the mechanical properties and thermal insulation performance of RATIC were also studied. Results showed that the pozzolanic reaction caused by RFA2 effectively improved the mechanical properties of RATIC; 75% was the optimal replacement ratio of RATIC prepared by RFA2. Added RFA decreased the thermal conductivity of thermal insulation concrete (TIC). The total shrinkage strain of RATIC increased with the increase of the replacement ratio of RFA. The 150d total shrinkage of RATIC prepared by RFA1 was 1.46 times that of TIC and the 150d total shrinkage of RATIC prepared by RFA2 was 1.23 times. The addition of GHBs led to the increase of early total shrinkage strain of concrete. Under the combined action of the higher elastic modulus of RFA2 and the pozzolanic components contained in RFA2, the total shrinkage strain of RATIC prepared by RFA2 with the same replacement ratio was smaller than that of RATIC prepared by RFA1. For example, the final total shrinkage strain of RATIC prepared by RFA2 at 100% replacement ratio was about 18.6% less than that of RATIC prepared by RFA1. A time-dependent shrinkage model considering the influence of the elastic modulus of RFA and the addition of GHB on the total shrinkage of RATIC was proposed and validated by the experimental results.


Sign in / Sign up

Export Citation Format

Share Document