scholarly journals Study on mechanical properties of granite minerals based on nanoindentation test technology

2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4457-4463
Author(s):  
Man Lei ◽  
Fa-Ning Dang ◽  
Hai-Bin Xue ◽  
Zhang Yu ◽  
Ming-Ming He

In this paper, the nanoscale mechanical properties of quartz, feldspar, and mica in granite are studied by the nanoindentation technique. Firstly, the surface morphol?ogy of each mineral composition in granite is obtained by a SEM. Secondly, the elastic modulus and hardness of three minerals in granite are calculated through the load-displacement curve obtained by the nanoindentation test. Based on the energy analysis method, the nanometer fracture toughness of three minerals in granite is obtained. Finally, the correlation between the elastic modulus, the hard?ness, and the fracture toughness are obtained by experimental data.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Man Lei ◽  
Fa-ning Dang ◽  
Haibin Xue ◽  
Mingming He

In order to study the mechanical properties of granite at the micro- and nanoscale, the load-displacement curve, residual indentation information, and component information of the quartz, feldspar, and mica in granite were obtained using a nanoindentation test, a scanning electron microscope (SEM), and X-ray diffraction (XRD). The elastic modulus and the hardness of each component of the granite were obtained through statistical analysis. Treating rock as a composite material, the relation between the macro- and microscopic mechanical properties of rock was established through the theory of micromechanical homogenization. The transition from micromechanical parameters to macromechanical parameters was realized. The equivalent elastic modulus and Poisson’s ratio of the granite were obtained by the Self-consistent method, the Dilute method, and the Mori-Tanaka method. Compared with the elastic modulus and the Poisson ratio of granites measured by a uniaxial compression test and the available data, the applicability of the three methods were analyzed. The results show that the elastic modulus and hardness of the quartz in the granite is the largest, the feldspar is the second, the mica is the smallest. The main mineral contents in granite were analyzed using the semiquantitative method by XRD and the rock slice identification test. The elastic modulus and the Poisson ratio of granite calculated by three linear homogenization methods are consistent with those of the uniaxial compression test. After comparing the calculation results of the three methods, it is found that the Mori-Tanaka method is more suitable for studying the mechanical properties of rock materials. This method has an important theoretical significance and practical value for studying the quantitative relationship between macro- and micromechanical indexes of brittle materials. The research results provide a new method and an important reference for studying the macro-, micro-, and nanomechanical properties of rock.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


2014 ◽  
Vol 616 ◽  
pp. 27-31 ◽  
Author(s):  
Tomohiro Kobayashi ◽  
Katsumi Yoshida ◽  
Toyohiko Yano

The CNT/B4C composite with Al2O3 additive was fabricated by hot-pressing following extrusion molding of a CNT/B4C paste, and mechanical properties of the obtained composite were investigated. Many CNTs in the composite aligned along the extrusion direction from SEM observation. 3-points bending strength of the composite was slightly lower than that of the monolithic B4C. Elastic modulus and Vickers hardness of the composite drastically decreased with CNT addition. Fracture toughness of the composite was higher than that of the monolithic B4C.


2002 ◽  
Vol 17 (1) ◽  
pp. 224-233 ◽  
Author(s):  
Jaap Den Toonder ◽  
Jürgen Malzbender ◽  
Gijsbertus De With ◽  
Ruud Balkenende

The reliability of coatings that are used in industrial applications critically depends on their mechanical properties. Nanoindentation and scratch testing are well-established techniques to measure some of these properties, namely the elastic modulus and hardness of coatings. In this paper, we investigate the possibility of also assessing the coating fracture toughness and the energy of adhesion between the coating and the substrate using indentation and scratch testing. Various existing and new methods are discussed, and they are illustrated by measurements on particle-filled sol-gel coatings on glass. All methods are based on the occurrence of cracking, and they are therefore only applicable to coating systems that act like brittle materials and exhibit cracking during indentation and scratching. The methods for determining the fracture toughness give comparable results, but the values still differ to within about 50%. The values of the adhesion energy obtained from different measurements are consistent, but it remains uncertain to which extent the obtained values are quantitatively correct. The results show that the methods used are promising, but more research is needed to obtain reliable quantitative results.


2013 ◽  
Vol 331 ◽  
pp. 456-460
Author(s):  
Min He ◽  
Duan Hu Shi ◽  
Feng Yang ◽  
Ning Zhang ◽  
Hua Feng Guo

An indentation approach with Berkovich indenter is proposed to determine fracture toughness for ductile materials. With decrease of effective elastic modulus, an approximate linear relationship between logarithmic plastic penetration depth and logarithmic effective elastic modulus, and a quadratic polynomial relationship between the plastic penetration depths and penetration loads are exhibited by indentation investigation with Berkovich indenter. The damage constructive equation of effective elastic modulus is proposed to determine the critical effective elastic modulus at the fracture point, which is the key problem to calculate the indentation energy to fracture. The critical plastic penetration depth is identified after the critical effective elastic modulus can be predicted by conventional mechanical properties. The fracture toughness is calculated according to the equation of penetration load, plastic penetration depth and the critical plastic penetration depth.


Holzforschung ◽  
2007 ◽  
Vol 61 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Seung-Hwan Lee ◽  
Siqun Wang ◽  
George M. Pharr ◽  
Matthew Kant ◽  
Dayakar Penumadu

Abstract Mechanical and time-dependent mechanical properties of lyocell fibers have been investigated as a function of depth at a nano-scale level in longitudinal and transverse directions. The nanoindentation technique was applied and extended to continuous stiffness measurement. Lyo10 and Lyo13 lyocell fibers were investigated. The individual fiber properties were measured using a nano-tensile testing system to obtain reference data for mechanical properties. The hardness and elastic modulus obtained from nanoindentation test are described using two different approaches. The first uses mean values for a depth of 150–300 nm, while the second uses unloading values at the final indentation depth. There is no significant difference between modulus values inferred from nanoindentation and those obtained from single fiber tensile testing. Hardness and elastic modulus values were higher in the longitudinal direction than those in the transverse direction and Lyo13 values were higher than those for Lyo10 in both directions. The time-dependent mechanical properties were also investigated as a function of the holding time. Increasing the holding time led to an increase in indentation displacement and a decrease in hardness. Stress exponents were calculated from the linear relationship between contact stress and contact strain using a power-law creep equation.


2007 ◽  
Vol 1049 ◽  
Author(s):  
Jayadeep Deva Reddy ◽  
Alex A. Volinsky ◽  
Christopher L. Frewin ◽  
Chris Locke ◽  
Stephen E. Saddow

AbstractThere is a technological need for hard thin films with high elastic modulus and fracture toughness. Silicon carbide (SiC) fulfills such requirements for a variety of applications at high temperatures and for high-wear MEMS. A detailed study of the mechanical properties of single crystal and polycrystalline 3C-SiC films grown on Si substrates was performed by means of nanoindentation using a Berkovich diamond tip. The thickness of both the single and polycrystalline SiC films was around 1-2 μm. Under indentation loads below 500 μN both films exhibit Hertzian elastic contact without plastic deformation. The polycrystalline SiC films have an elastic modulus of 457 GPa and hardness of 33.5 GPa, while the single crystalline SiC films elastic modulus and hardness were measured to be 433 GPa and 31.2 GPa, respectively. These results indicate that polycrystalline SiC thin films are more attractive for MEMS applications when compared with the single crystal 3C-SiC, which is promising since growing single crystal 3C-SiC films is more challenging.


2019 ◽  
Vol 45 (4) ◽  
pp. 387-395
Author(s):  
AA Abdulmajeed ◽  
TE Donovan ◽  
R Cook ◽  
TA Sulaiman

Clinical Relevance Bulk-fill composite resins may have comparable mechanical properties to conventional composite resin. Preheating does not reduce the mechanical properties of composite resins. SUMMARY Statement of Problem: Bulk-fill composite resins are increasingly used for direct restorations. Preheating high-viscosity versions of these composites has been advocated to increase flowability and adaptability. It is not known what changes preheating may cause on the mechanical properties of these composite resins. Moreover, the mechanical properties of these composites after mastication simulation is lacking. Purpose: The purpose of this study was to evaluate the effect of fatiguing and preheating on the mechanical properties of bulk-fill composite resin in comparison to its conventional counterpart. Methods and Materials: One hundred eighty specimens of Filtek One Bulk Fill Restorative (FOBR; Bulk-Fill, 3M ESPE) and Filtek Supreme Ultra (FSU; Conventional, 3M ESPE) were prepared for each of the following tests: fracture toughness (International Organization for Standardization, ISO 6872), diametral tensile strength (No. 27 of ANSI/ADA), flexural strength, and elastic modulus (ISO Standard 4049). Specimens in the preheated group were heated to 68°C for 10 minutes and in the fatiguing group were cyclically loaded and thermocycled for 600,000 cycles and then tested. Two-/one-way analysis of variance followed by Tukey Honest Significant Difference (HSD) post hoc test was used to analyze data for statistical significance (α=0.05). Results: Preheating and fatiguing had a significant effect on the properties of both FSU and FOBR. Fracture toughness increased for FOBR specimens when preheated and decreased when fatigued (p=0.016). FOBR had higher fracture toughness value than FSU. Diametral tensile strength decreased significantly after fatiguing for FSU (p=0.0001). FOBR had a lower diametral tensile strength baseline value compared with FSU (p=0.004). Fatiguing significantly reduced the flexural strength of both FSU and FOBR (p=0.011). Preheating had no effect on the flexural strength of either FSU or FOBR. Preheating and fatiguing significantly decreased the elastic modulus of both composite resins equally (p>0.05). Conclusions: Preheating and fatiguing influenced the mechanical properties of composite resins. Both composites displayed similar mechanical properties. Preheating did not yield a major negative effect on their mechanical properties; the clinical implications are yet to be determined.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040041
Author(s):  
Hairong Sun ◽  
Jinpeng Yu ◽  
Guoqing Gou ◽  
Wei Gao

Nanostructured WC-17Co, 2C-12Co coatings and conventional WC-17Co coating were prepared by High Velocity Oxygen Flame (HVOF) spray technique. The elastic modulus, fracture toughness and crack spread path were studied. The residual stress, different phases, microstructure from surface to the depth of coatings were also analyzed. While the nanostructured WC-12Co coating showed the highest elastic modulus, the nanostructured WC-17Co coating has the highest fracture toughness. The compressive residual stress of the nanostructured coatings was higher than the conventional coating. Both WC and W2C phases showed compressive residual stress, but Co6W6C phase showed tensile stress. The distribution of residual stress showed that the stress is the lowest at the surface and the highest close to the interface.


Author(s):  
Toru Kitagaki ◽  
Takanori Hoshino ◽  
Kimihiko Yano ◽  
Nobuo Okamura ◽  
Hiroshi Ohara ◽  
...  

Evaluation of fuel debris properties in the Fukushima Daiichi nuclear power plant (1F) is required to develop fuel debris removal tools. In the removal of debris resulting from the Three Mile Island unit 2 (TMI-2) accident, a core-boring system played an important role. Considering the working principle of core boring, hardness, elastic modulus, and fracture toughness were found to be important fuel debris properties that profoundly influenced the performance of the boring machine. It is speculated that uranium and zirconium oxide solid solution (U,Zr)O2 is one of the major materials in the fuel debris from 1F. In addition, the Zr content of the fuel debris from 1F is expected to be higher than that of the debris from TMI-2 because the 1F reactors were boiling-water reactors. In this research, the mechanical properties of cubic (U,Zr)O2 samples containing 10%–65% ZrO2 are evaluated. The hardness, elastic modulus, and fracture toughness are measured by the Vickers test, ultrasonic pulse echo method, and indentation fracture method, respectively. In the case of (U,Zr)O2 samples containing less than 50% ZrO2, Vickers hardness and fracture toughness increased, and the elastic modulus decreased slightly with increasing ZrO2 content. Moreover, all of those values of the (U,Zr)O2 samples containing 65% ZrO2 increased slightly compared to (U,Zr)O2 samples containing 55% ZrO2. ZrO2 content affects fracture toughness significantly in the case of samples containing less than 10% ZrO2. Higher Zr content (exceeding 50%) has little effect on the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document