Lignin and carbohydrate variation with earlywood, latewood, and compression wood content of bent and straight ramets of a radiata pine clone

Holzforschung ◽  
2010 ◽  
Vol 64 (1) ◽  
Author(s):  
R. Paul Kibblewhite ◽  
Ian D. Suckling ◽  
Robert Evans ◽  
Jennifer C. Grace ◽  
Mark J.C. Riddell

Abstract Changes in lignin and carbohydrate content with radial direction, growth-layer number, compression wood (CW) severity, and earlywood (EW) and latewood (LW) origin are described for one near-ground position in each of a severely bent and a nominally straight ramet (tree) of a clone (genotype) of Pinus radiata. Bark-to-bark strips were taken through the pith and the longest radial dimension of the CW side of the discs. Separate EW and LW samples were obtained for most growth layers, yielding a total of 95 samples. Differences in lignin and carbohydrate content between EW and LW were large where CW formation was moderate and small where it was severe. Mannose content was consistently different in the EW and LW of opposite wood (OW) and CW. Results suggested that the inner juvenile wood of OW rings might contain either a galactose-rich galactoglucomannan or a β-1,4-galactan. Consideration of all 95 samples showed that although the contents of galactose, lignin, glucose, and mannose were linearly and strongly correlated with one another, their relationship with xylose and arabinose content was non-linear.

IAWA Journal ◽  
2004 ◽  
Vol 25 (3) ◽  
pp. 253-271 ◽  
Author(s):  
Lloyd A. Donaldson ◽  
Jenny Grace ◽  
Geoff M. Downes

Two trees of radiata pine, one showing severe lean, the other growing almost vertically, were assessed for the presence and anatomical properties of compression wood, including anatomy, lignin distribution, microfibril angle, basic density, radial and tangential lumen diameter and cell wall thickness. Both trees contained significant amounts of compression wood although the severity and amount of compression wood was greater in the leaning tree. Changes in lignin distribution seem to be characteristic of the mildest forms of compression wood with reduced lignification of the middle lamella representing the earliest change observed from normal wood. An increase in microfibril angle was associated with both mild and severe compression wood although examples of severe compression wood with the same or smaller microfibril angles than opposite wood, or with very small microfibril angles, were found. When segregated into mild and severe compression wood the average difference in microfibril angle was 4° and 8° respectively compared with opposite wood. Within-ring distribution of microfibril angle was different in severe compression wood compared to opposite wood with higher angles in the latewood.Severe compression wood showed a 22% increase in basic density compared to mild compression wood and opposite wood. The increased density was accounted for in terms of a 26% increase in tracheid wall thickness throughout the growth ring, offset by a 9% increase in radial lumen diameter, slightly greater in the latewood. There were no significant changes in density or cell dimensions in mild compression wood compared with opposite wood.


IAWA Journal ◽  
2014 ◽  
Vol 35 (4) ◽  
pp. 385-394
Author(s):  
Xinguo Li ◽  
Robert Evans ◽  
Washington Gapare ◽  
Xiaohui Yang ◽  
Harry X. Wu

The formation of reaction wood is an adaptive feature of trees in response to various mechanical forces. In gymnosperms, reaction wood consists of compression wood (CW) and opposite wood (OW) that are formed on the underside and upperside of bent trunks and branches. Although reaction wood formed in bent trunks has been extensively investigated, relatively little has been reported from conifer branches. In this study SilviScan® technology was used to characterize radiata pine branches at high resolution. Compared to OW formed in the branches, CW showed greater growth, darker colour, thicker tracheid walls, higher coarseness, larger microfibril angle (MFA), higher wood density, lower extensional stiffness and smaller internal specific surface area. However, tracheids of CW were similar to those of OW in their radial and tangential diameters. These results indicated that gravity influenced tracheid cell division and secondary wall formation but had limited impact on primary wall expansion. Furthermore, seasonal patterns of CW formation were not observed in the branches from cambial age 4 while earlywood and latewood were clearly separated in all rings of OW. The marked change of MFA during reaction wood formation suggested that branches could be ideal materials for further study of cellulose microfibril orientation.


Author(s):  
Vladimír Gryc ◽  
Hanuš Vavrčík

The paper is aimed at the field of the microscopic structure of wood dealing with the description of the most important anatomic element in softwood – tracheids in a stem with the occurrence of reaction wood. Significant changes of tracheids were found along the height and radius of a stem. There were statistically significant differences between particular annual rings (variability along the stem radius). The height of a stem was also statistically significant. On the basis of the results obtained 3D models were created (for zones compression wood, opposite wood and site wood; models for radial dimension an early-wood tracheid and late-wood tracheid) depicting changes in transverse dimensions of the spruce tracheid in relation to its position in a stem. Structure of ring with compression wood was studied too. It was observed that the ring with occurrence of compression wood has a following structure: early wood tracheids at the beginning of the growing season, transitional tracheids, compression tracheids and at the end of an annual ring typical late wood tracheids. The rings with compression wood show more tracheids as compared with annual rings from the opposite side.


2015 ◽  
Vol 40 (2) ◽  
pp. 315-340 ◽  
Author(s):  
B. A. Molski

The corewood of pine ds very prone to compression wood formation, this changing the whole pattern of the tree ring structure and the siz.es of early and late wood. Compression wood always increases the formation of late wood at the expense of early wood. Tree rings with compression wood are generally wider than those without it, but there occur also tree rings wihout compression wood wider than those in which it is present, formed in the same year and in the same tree.


IAWA Journal ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 48-60
Author(s):  
Byantara Darsan Purusatama ◽  
Nam Hun Kim

Abstract The characteristics of cross-field pitting among compression wood, lateral wood, and opposite wood, in the stem woods of Ginkgo biloba and Pinus densiflora were investigated with optical and scanning electron microscopy. In Ginkgo biloba, compression wood exhibited piceoid pits, while lateral and opposite wood exhibited cupressoid pits. The compression wood of Pinus densiflora exhibited cupressoid pits and piceoid pits, while lateral wood and opposite wood exhibited pinoid and window-like pits in the cross-field. In both species, compression wood yielded the smallest pit number among each part, while opposite wood yielded the greatest pit number per cross-field. Cross-field pitting diameters of compression wood and opposite wood were significantly smaller than lateral wood in Ginkgo biloba, while the cross-field pitting of compression wood was the smallest in Pinus densiflora. Radial tracheid diameter of compression wood was slightly smaller than lateral and opposite wood in Ginkgo biloba and significantly smaller than lateral and opposite wood in Pinus densiflora. In conclusion, the cross-field pitting type, pit number, and cross-field pitting diameter could be used to identify reaction wood in the stem wood of Ginkgo biloba and Pinus densiflora.


Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 219-222
Author(s):  
Bruno Charles Dias Soares ◽  
José Tarcísio Lima ◽  
Selma Lopes Goulart ◽  
Claudineia Olímpia de Assis

AbstractTree stems deviating from the vertical position react by the formation of tension wood (TW) or compression wood (CW), which are called in general as reaction wood (RW), in which the cells are modified chemically and anatomically. The focus of the present work is the mechanical behavior of TW in five 37-year-oldEucalyptusspecies, which were grown on a planting area with an average slope of 28% leading to decentralized pith in the trees, which is an unequivocal indication of the presence of RW. TW and opposite wood (OW) samples were isolated and subjected to a compression-parallel-to-grain test. It was observed that TW is less resistant and less stiff than the OW.


2008 ◽  
Vol 53 (No. 6) ◽  
pp. 243-252 ◽  
Author(s):  
V. Gryc ◽  
H. Vavrčík ◽  
P. Horáček

Wood is a hygroscopic material that is affected by shape changes. The aim of this study was to analyse the variability of wood swelling in the individual anatomic directions. Wood swelling was examined on a sample tree containing compression wood. With regard to the presence of compression wood, the sample tree was divided into the following three zones: the compression wood zone (CW), the opposite wood zone (OW), and two side wood zones (SWL and SWR). The results show that the wood containing compression wood swells less at the transverse plane (in the radial and tangential direction). Conversely, the swelling of compression wood in the longitudinal direction is higher. The same proportion was established in the swelling coefficient that grew proportionally to the increasing wood density in all anatomic directions. The proportion of compression wood manifested its effects in different ways. Transversely (in the radial and tangential direction) the swelling coefficient decreased proportionally to the increasing percentage of compression wood, longitudinally, however, the opposite was the case.


IAWA Journal ◽  
2017 ◽  
Vol 38 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Jimmy Thomas ◽  
David A. Collings

We describe a novel, semi-automatic method for the detection, visualisation and quantification of axially oriented resin canals in transverse sections of Pinus radiata D. Don (radiata pine) trees. Sections were imaged with a flatbed scanner using circularly polarised transmitted light, with the resin canals that contained only primary cell walls appearing dark against a bright background of highly-birefringent tracheids. These images were analysed using ImageJ software and allowed for a non-biased, automated detection of resin canals and their spatial distribution across the entire stem. We analysed 8-month-old trees that had been subjected to tilting to induce compression wood and rocking to simulate the effects of wind. These experiments showed that both rocking and tilting promoted the formation of wood and confirmed that resin canals were most common adjacent to the pith. Both the rocking and tilting treatments caused a decrease in the number of resin canals per unit area when compared to vertical controls, but this change was due to the increased formation of wood by these treatments. In tilted samples, however, analysis of resin canal distribution showed that canals were more common on the lower sides of stems but these canals were excluded from regions that formed compression wood.


Holzforschung ◽  
2008 ◽  
Vol 62 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Nasko Terziev ◽  
Geoffrey Daniel ◽  
Ann Marklund

Abstract The aim of the present study was to determine the effect of a variety of abnormal fibres on the mechanical properties of paper made from Norway spruce, Picea abies (L.) Karst. Fibres representing abnormality were obtained from trees treated by irrigation and fertilisation. Moreover, fibres from compression wood and its accompanying opposite wood were isolated. The effect of dislocations on paper quality was studied on four mixtures (20, 40, 60 and 80% fibres with induced dislocations) of untreated/compressed fibres. Two more groups consisting of control untreated samples and samples with 100%-induced dislocations were also included in the test. The mechanical properties of the paper were tested and the results were compared to those of control samples. Abnormal fibres reduced the desired mechanical properties of the final paper concerning tensile strength, modulus of elasticity and tear-tensile index. Irrespective of the type of treatment, all morphological changes introduced in fibre cell walls appear to directly affect changes in the mechanical properties of the paper. Control samples had a tear index of 25 compared to 10 mN m2 g-1 of samples containing 100% dislocations. It is obvious that 20% of dislocations, an amount that is expected to be induced in pulp under mechanical processing and transport, will contribute to a decrease in tear index with an average of 3 mN m2 g-1, i.e., 10% of the total value.


Holzforschung ◽  
2013 ◽  
Vol 67 (7) ◽  
pp. 763-770 ◽  
Author(s):  
Ingela Bjurhager ◽  
E. Kristofer Gamstedt ◽  
Daniel Keunecke ◽  
Peter Niemz ◽  
Lars A. Berglund

Abstract Yew (Taxus baccata L.) longbow was the preferred weapon in the Middle Ages until the emergence of guns. In this study, the tensile, compression, and bending properties of yew were investigated. The advantage of yew over the other species in the study was also confirmed by a simple beam model. The superior toughness of yew has the effect that a yew longbow has a higher range compared with bows made from other species. Unexpectedly, the mechanical performance of a bow made from yew is influenced by the juvenile-to-mature wood ratio rather than by the heartwood-to-sapwood ratio. A yew bow is predicted to have maximized performance at a juvenile wood content of 30–50%, and located at the concave side (the compressive side facing the bowyer). Here, the stiffness and yield stress in compression should be as high as possible.


Sign in / Sign up

Export Citation Format

Share Document