Development of an integrated thermal and enzymatic hydrolysis for lignocellulosic biomass in fixed-bed reactors

Holzforschung ◽  
2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Christian Kirsch ◽  
Carsten Zetzl ◽  
Irina Smirnova

Abstract The limitations of the current biorefinery process utilizing stirred-tank reactors for the enzymatic step include poor mixing in the case of high biomass loadings, additional steps for the product separation, and a long reaction time. In this study the hydrothermal pretreatment and the enzymatic hydrolysis of the lignocellulosic biomass were combined in one fixed-bed reactor. The influence of the shear forces during recirculation and enzyme stability at elevated temperatures were investigated. It has been shown that the shear forces resulting from pumping have a negligible effect on enzyme activity. However, large pressure drops reduce the enzyme activity significantly. Furthermore, the enzyme stability was significantly increased at elevated temperatures (60°C) by applying static pressures up to 200 bar (56% residual activity at 60°C after 24 h). This is beneficial for the process as a higher temperature accelerates the reaction. Further improvement of the overall process efficiency was achieved by increasing the solid-to-water ratio and circulation of the enzyme solution. At a biomass content of 7%, a glucose concentration of 61 g l-1 and a yield of 85% was achieved. The integrated process was first done on a laboratory scale (50 ml). At 100 bar, 60°C and 10% biomass loading an increased initial reaction rate was observed. However, this effect was followed by the stagnation of the glucose yield as one of the enzymes, Novozyme 188, showed no remarkable stabilization with pressure. Nevertheless, an overall glucose yield of 40% was achieved after 5.5 h, compared to 14 h under normal pressure and 50°C.

Author(s):  
Kotaro Nakamura ◽  
Masashi Tanabe ◽  
Satoru Abe ◽  
Takashi Mawatari ◽  
Takao Nakagaki

Abstract At the Fukushima Daiichi nuclear power plant, zirconium in the fuel rod cladding reacted with water vapor at elevated temperatures due to a loss of cooling water, resulting in the production of a large amount of hydrogen. This hydrogen leaked from the reactor vessel and accumulated in the top of reactor building, eventually leading to an explosion. A hydrogen treatment system that re-oxidizes hydrogen to water vapor is one of the effective methods to prevent such an explosion. A prominent re-oxidation method is via a fixed bed reactor packed with metal oxide pellets. The advantages of this method are its relatively fast oxidation rate without external oxygen/air injection. In this study, experiments and complementary numerical calculations were performed on the hydrogen re-oxidation reaction by metal oxides. The oxidation of hydrogen by copper oxide is modeled by 5 interacting, elementary reactions consisting of 6 chemical species. Experiments were performed using two packed bed set-ups, with measurement of inlet/outlet gas composition and pre/post-analysis of solid composition used to determine constants of the individual reaction rates for numerical calculations. From these reaction constants, the temporal behavior of the outlet gas was predicted.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1274 ◽  
Author(s):  
Daryl Rafael Osuna-Laveaga ◽  
Octavio García-Depraect ◽  
Ramiro Vallejo-Rodríguez ◽  
Alberto López-López ◽  
Elizabeth León-Becerril

The combined effects of three key ozonation process parameters on the integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse (SCB) were investigated, with emphasis on the relationship between sugar release and ozone consumption. A lab-scale fixed bed reactor was employed for ozonation at varying ozone doses (50, 75 and 100 mg O3/g SCB), particle sizes (420, 710 and 1000 µm) and moisture contents (30, 45 and 60% w/w) in multifactorial experiments, keeping a residence time of 30 min. The ozonated SCB showed a reduction in the content of acid-insoluble lignin from 26.6 down to 19.1% w/w, while those of cellulose and hemicellulose were retained above 45.5 and 13.6% w/w, with recoveries of 100–89.9 and 83.5–72.7%, respectively. Ozone-assisted enzymatic hydrolysis allowed attaining glucose and xylose yields as high as 45.0 and 37.8%, respectively. The sugars released/ozone expended ratio ranged between 2.3 and 5.7 g sugars/g O3, being the higher value achieved with an applied ozone input of 50 mg O3/g SCB and SCB with 420 µm particle size and 60% moisture. Such operating conditions led to efficient ozone utilization (<2% unreacted ozone) with a yield of 0.29 g sugars/g SCB. Overall, the amount of sugars released relative to the ozone consumed was improved, entailing an estimated cost of ozonation of USD 34.7/ton of SCB, which could enhance the profitability of the process.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2156
Author(s):  
Young Ku ◽  
Chia-Wei Chang ◽  
Shr-Han Shiu ◽  
Hsuan-Chih Wu ◽  
Niels Michiel Moed

Chemical looping with oxygen uncoupling (CLOU) is an innovative alternative to conventional combustion. CuO/ZrO2 oxygen carriers were tested in this system for their effectiveness and resilience. Cupric oxide (CuO) was demonstrated to be a reliable oxygen carrier for oxygen-uncoupling with consistent recyclability even after 50 redox cycles in a thermogravimetric analyzer (TGA). The reduction of CuO to generate Cu2O and oxygen was observed to be improved markedly for experiments operated at higher temperatures; however, the oxidation of Cu2O by air to generate CuO was hindered for experiments carried out at elevated temperatures. The reduction rate of fabricated CuO/ZrO2 particles containing 40% CuO was enhanced with increasing temperature and decreased with increasing particle size for experiments operated in a fixed bed reactor. The geometrical contraction and Avrami-Erofe’ev models were demonstrated to be appropriate for describing the reduction and oxidation of CuO/ZrO2, respectively. The activation energies for the reduction and oxidation were determined to be 250.6 kJ/mol and 57.6 kJ/mol, respectively, based on experimental results in the temperature range between 850 and 1000 °C.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7834-7840 ◽  
Author(s):  
Jungwoo Yang ◽  
Ji Eun Kim ◽  
Jae Kyun Kim ◽  
Sung ho Lee ◽  
Ju-Hyun Yu ◽  
...  

The performance of cellulase in the enzymatic saccharification of lignocellulose depends on the characteristics of lignocellulosic biomass feedstocks and the pretreatment method used. Efficient hydrolysis of specifically pretreated lignocellulose necessitates the knowledge of the characteristics of the optimal commercial cellulases. In this study, commercial cellulase preparations (Accellerase™ 1000, Accellerase® 1500, and Spezyme® CP from DuPont and Cellic® CTec2 from Novozymes) were evaluated for their hydrolysis efficiency of hydrothermally pretreated empty fruit bunches (EFBs). The highest glucose yields of 91.3% and 84.7% were achieved for 30 FPU of Cellic® CTec2/g glucan with and without Cellic® HTec2, respectively. Of the four cellulases tested, Cellic® CTec2, which showed the highest cellobiohydrolase, xylanase, and β-glucosidase activities, showed the highest glucose yield in the enzymatic hydrolysis of hydrothermally pretreated EFBs. The results of this study are valuable for those who plan to enzymatically hydrolyze hydrothermally pretreated EFBs.


2013 ◽  
Vol 724-725 ◽  
pp. 207-211 ◽  
Author(s):  
Hai Song Wang ◽  
Hong Ling Gao ◽  
Bin Li ◽  
Xin Dong Mu

For the enzymatic saccharification of lignocellulosic biomass, single acid or alkaline pretreatment is not satisfactory because of the low sugar yields together with the neutralization of residual chemicals before enzymatic hydrolysis. Herein, an acid-alkaline two-stage pretreatment process was designed to treat corn stover. During the process, the pretreated liquid from the first stage and the solid residues from the second stage were mixed together for the subsequent simultaneous enzymatic hydrolysis, where a mixture of cellulase with an activity loading of 20 FPU/g substrate, cellobiase with an activity loading of 5 U/g substrate, and xylanase with an activity loading of 200 U/g substrate was used. Compared to the single acid or alkaline pretreatment, the acid-alkaline two-stage pretreatment could significantly improve the enzymatic saccharification, and 91.2% glucose yield with 52.56% of the theoretical total reducing sugar yield was achieved after the subsequent enzymatic hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document