Pin-On-Disc Characterization of Brass/Ferritic and Pearlitic Ductile Iron Rubbing Pair

2011 ◽  
Vol 30 (1-2) ◽  
Author(s):  
Melik Çetin
2019 ◽  
Vol 8 (2) ◽  
pp. 36
Author(s):  
Abel. A. Barnabas ◽  
Akinlabi Oyetunji ◽  
S. O. Seidu

In this research, Scanning Electron Microscope (SEM) analysis was conducted on the produced antimony modified carbidic austempered ductile iron for agricultural implement production. Six different alloys of carbidic austempered ductile iron with varying micro quantities of antimony elements were produced. The produced alloys were heated to austenitic temperature of 910oC, held at this temperature for 1 hour, finally subjected to austempering temperatures of 300°C and 325°C for periods of 1-3 hours. The SEM in conjunction with XRD and EDS was used for the analysis. Microstructural phase morphology, phase constituents and phase compositions were viewed with SEM, XRD and EDS respectively. The results show that various phases such as spiky graphite, blocky carbides, granular carbide, pearlite and ausferrite matrix. The XRD pattern revealed some compounds such as (Fe, Cr)3C, (primary carbide), Cr6C23 (few secondary carbide), (NiFe2O4), chromite (FeCr2O4), Cr7C3 (few eutectic carbide) and Cr3Ni2. In conclusion, it was observed in terms of morphology that chunky graphite, blocky carbide and pearlite phases were present in the cast carbidic ductile iron (CDI) without antimony addition. The CDI with varying quantities of antimony additions shows spiky graphite, granular carbides and pearlite matrix. After the samples were subjected to austempering processes, all the phases were found to be intact except the pearlite phase that transformed to ausferrite phase. The antimony element in the alloys was seen to promote the formation of pearlite phase intensively. The hardness of the samples increases as the antimony addition increases from 0.096wt.% to 0.288wt.% owing to the increase in pearlite phase, while the impact toughness reaches relatively high level, when 0.288wt.% antimony was added, probably due to the refinement of graphite nodules. All the results obtained showed that appropriate content of antimony addition plays an important role in increasing the nucleation rate of graphite nodules, and also lead to improvement in carbide formation thereby providing good balance between wear and impact properties.


2016 ◽  
Vol 254 ◽  
pp. 33-42
Author(s):  
Ioan Catalin Mon ◽  
Mircea Horia Tierean ◽  
Eugen Cicala ◽  
Michel Pilloz ◽  
Iryna Tomashchuk ◽  
...  

This paper studies the ductile iron (DI) weldability using laser welding. For performing an Yb:YAG continuous laser was used, with a maximum power of 6 kW. The parametrical window power (P) - welding speed (S) was explored by carrying out the fusion lines on ductile iron plates without preheating, to determinate areas of weldability (complete penetration, correct geometry) to allow further characterization. The criteria for selection of focus areas were the geometry of the fusion lines and the absence of the welding defects. The unsatisfactory domains were characterized by: collapse of the melted metal, incomplete penetration, low fusion lines quality (geometry, compactness). In present study, several values of power and welding speed have been tested to identify their influence on geometry, compactness of the joints and mechanical properties. As result, the power-welding speed diagram for feasible domains of laser welding was generated.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 629
Author(s):  
P Dhanapal ◽  
M Raja Sankar ◽  
R Manimaran ◽  
R Velmurugan

ADI is a material known for Impact toughness, hardness and wear resistance. CarbidicAustempered Ductile Iron [CADI] is a ductile iron which contains high wear resistance alloy carbides in its matrix and is produced by selecting proper composition of material through melting route. Two different alloy compositions of carbon equivalent close to the eutectic composition with variation in the chromium content are used in this study. A detailed microstructure characterization of the material is studied. Effects of austempering parameters on the mechanical properties like impact toughness, hardness and wear resistance are evaluated. Improvements in themechanical properties are found and are correlated with the microstructure. SEM analysis of the wear surface is also studied.


2012 ◽  
Vol 533 ◽  
pp. 195-200 ◽  
Author(s):  
J. Joseph ◽  
Daniel M. Fabijanic

Fluidized bed reactor chemical vapor deposition (FBR-CVD) has been used to enrich the surface of oxygen free high conductivity (OFHC) copper with titanium, silicon and aluminum. This technique enables the production of coherent and adherent intermetallic surface layers of uniform thickness and high hardness. The characterization of the coatings was performed using backscatter scanning electron microscopy (BS-SEM), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES) and micro-hardness. The tribological properties of the coatings in dry sliding contact with steel were evaluated by pin-on-disc wear testing.


2016 ◽  
Vol 68 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Harun Mindivan

Purpose This study aims to investigate the microstructure and the abrasive wear features of the untreated and pack borided GGG 50 quality ductile iron under various working temperatures. Design/methodology/approach GGG 50 quality as-cast ductile iron samples were pack borided in Ekabor II powder at 900°C for 3 h, followed by furnace cooling. Structural characterization was made by optical microscopy. Mechanical characterization was made by hardness and pin-on-disc wear test. Pin-on-disc test was conducted on a 240-mesh Al2O3 abrasive paper at various temperatures in between 25 and 450°C. Findings Room temperature abrasive wear resistance of the borided ductile iron increased with an increase in its surface hardness. High-temperature abrasive wear resistances of the borided ductile iron linearly decreased with an increase in test temperature. However, the untreated ductile iron exhibited relatively high resistance to abrasion at a temperature of 150°C. Originality/value This study can be a practical reference and offers insight into the effects of boriding process on the increase of room temperature wear resistance. However, above 150°C, the untreated ductile iron exhibited similar abrasive wear performance as compared to the borided ductile iron.


2016 ◽  
Vol 842 ◽  
pp. 36-42
Author(s):  
Eko Surojo ◽  
Wijang Wisnu Raharjo ◽  
Jamasri ◽  
Aditya Utama

In automotive parts market, there are two classes of commercial brake pad that are original equipment manufacturer (OEM) and aftermarket (Non-OEM spare part). In manufacturing of commercial brake pad materials, the difference of ingredient or concentration used is important because of differences in characteristics and cost. It is well known that the OEM brake pads are more expensive than the Non-OEM brake pads. In this study, the OEM and the Non-OEM of passenger car brake pad were evaluated in order to obtain a comparison of friction characteristics, composition, and microstructure between them. The OEM and the Non-OEM brake pad were purchased, cut out to form specimen, and then evaluated to obtain material characteristics. Specimens were subjected to friction testing using pin on disc machine and microstructure examinations. The results show that the OEM brake pad material has lower and more stable in coefficient of friction than the Non-OEM brake pad material. The OEM brake pad material also has more wear resistance than the Non-OEM brake pad material. Examinations using SEM/EDS show that the OEM brake pad material contains metallic fillers that are Cu and Fe, on the other hand, the Non-OEM brake pad material does not contain metallic filler. The Non-OEM brake pad material uses asbestos as reinforcement.


2010 ◽  
Vol 50 (2) ◽  
pp. 302-306 ◽  
Author(s):  
Alejandro Basso ◽  
Martín Caldera ◽  
Micro Chapetti ◽  
Jorge Sikora

2003 ◽  
Vol 779 ◽  
Author(s):  
Linda Y.L. Wu ◽  
Sandor Nemeth

AbstractPTFE-based coatings have been widely used, for example, on aluminum molds for molding of polyolefin packaging materials for its non-stick property. However, these coatings do not meet the users' scratch resistance and durability requirements. This paper describes a preliminary study on the synthesis and characterization of a PTFE/sol-gel composite coating material which combines the required non-stick and low friction properties of PTFE filler with the high scratch resistance and durability of a silica-based sol-gel matrix. The non-stick and low friction properties were achieved by using both the PTFE filler and the lubricious compound resulting from the reaction of a solvent with siloxane. The high scratch resistance was attributed to the enhanced adhesion to the electro-chemically pre-treated surface and the optimized silica and alumina filler contents in the sol-gel material. FE-SEM/EDX, FTIR, contact angle goniometry, scratch testing and a pin-on-disc tribometry were used to evaluate the coating properties.


Sign in / Sign up

Export Citation Format

Share Document