Characterization and Tribological Performance of Cu-Based Intermetallic Layers

2012 ◽  
Vol 533 ◽  
pp. 195-200 ◽  
Author(s):  
J. Joseph ◽  
Daniel M. Fabijanic

Fluidized bed reactor chemical vapor deposition (FBR-CVD) has been used to enrich the surface of oxygen free high conductivity (OFHC) copper with titanium, silicon and aluminum. This technique enables the production of coherent and adherent intermetallic surface layers of uniform thickness and high hardness. The characterization of the coatings was performed using backscatter scanning electron microscopy (BS-SEM), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES) and micro-hardness. The tribological properties of the coatings in dry sliding contact with steel were evaluated by pin-on-disc wear testing.

2016 ◽  
Vol 869 ◽  
pp. 721-726 ◽  
Author(s):  
Divani C. Barbosa ◽  
Ursula Andréia Mengui ◽  
Mauricio R. Baldan ◽  
Vladimir J. Trava-Airoldi ◽  
Evaldo José Corat

The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes are explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values and films morphologies obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations.


1996 ◽  
Vol 449 ◽  
Author(s):  
P. Kung ◽  
A. Saxler ◽  
D. Walker ◽  
X. Zhang ◽  
R. Lavado ◽  
...  

ABSTRACTWe present the metalorganic chemical vapor deposition growth, n-type and p-type doping and characterization of AlxGa1-xN alloys on sapphire substrates. We report the fabrication of Bragg reflectors and the demonstration of two dimensional electron gas structures using AlxGa1-xN high quality films. We report the structural characterization of the AlxGa1-xN / GaN multilayer structures and superlattices through X-ray diffraction and transmission electron microscopy. A density of screw and mixed threading dislocations as low as 107 cm-2 was estimated in AlxGa1-xN / GaN structures. The realization of AlxGa1-xN based UV photodetectors with tailored cut-off wavelengths from 365 to 200 nm are presented.


2018 ◽  
Vol 934 ◽  
pp. 8-12
Author(s):  
Jian Guo Zhao ◽  
Xiong Zhang ◽  
Jia Qi He ◽  
Shuai Chen ◽  
Zi Li Wu ◽  
...  

A serious of non-polar a-plane AlGaN-based multiple quantum wells (MQWs) were successfully grown on the semi-polar r-plane sapphire substrate with metal organic chemical vapor deposition technology. Intense MQWs-related emission peaks at an emission wavelength covered from 277-294 nm were observed based on the photoluminescence measurement. It was found that the employment of the trimethyl-aluminum (TMAl) flow duty-ratio modulation method which was developed based on the two-way pulsed-flows growth technique played a crucial role to control the Al composition of the non-polar a-plane AlGaN epi-layers. The non-polar a-plane AlGaN-based MQWs were deposited with the new developed TMAl flow duty-ratio modulation technique. Evident-3th order X-ray diffraction (XRD) satellite peak was observed from the high resolution-XRD measurement, proving the successful growth of non-polar a-plane AlGaN-based MQWs with abrupt hetero-interfaces.


2018 ◽  
Vol 382 ◽  
pp. 63-67
Author(s):  
Hirotaka Kato ◽  
Kazufumi Yasunaga

Sliding friction is one of the most powerful processes for microstructural evolution in the sub-surface, including grain refinement and recrystallization of deformed structure. Pin-on-disc sliding tests were carried out for 0.45 mass % carbon steels, and TEM microstructure and hardness of the specimens were investigated. Particularly effects of friction conditions on the microstructure at the surfaces and wear properties of the friction induced microstructure were studied. It was found that ultra-fine equi-axed grains in the 30 - 50 nm size range were produced in the case of a high friction speed of 5.0 m/s in an air atmosphere. Moreover, nano-crystalline microstructure can be produced in a vacuum atmosphere even if the friction speed was low. The friction induced nano-crystalline surface layers, which exhibited significant high hardness, showed good wear resistance.


1989 ◽  
Vol 168 ◽  
Author(s):  
R. A. Lowden ◽  
K. L. More ◽  
T. M. Besmann ◽  
R. D. James

AbstractChemical vapor deposition has been utilized to produce ternary, multiphase coatings of various compositions of silicon carbide (SiC) with Ti, Cr, and Mo. Thermodynamic calculations have been performed for a variety of experimental conditions in each system. Scanning, transmission and analytical electron microscopy, and X-ray diffraction techniques have been used to characterize the microstructures and to determine compositions.


1997 ◽  
Vol 468 ◽  
Author(s):  
V. A. Joshkin ◽  
J. C Roberts ◽  
E. L. Piner ◽  
M. K. Behbehani ◽  
F. G. McIntosh ◽  
...  

ABSTRACTWe report on the growth and characterization of InGaN bulk films and AlGaN/InGaN/AlGaN double heterostructures (DHs). Good quality bulk InGaN films have been grown by metalorganic chemical vapor deposition (MOCVD) with up to 40% InN as characterized by x-ray diffraction. The effect of hydrogen in the growth ambient on the lnN% incorporation in the InGaN films is presented. Photoluminescence (PL) spectra of AlGaN/InGaN/AlGaN DHs exhibit emission wavelengths from the violet through yellow depending on the growth conditions of the active InGaN layer. The PL spectra are fairly broad both at room temperature and 20 K, and could be a result of native defects or impurity related transitions. We also observed a linear dependence between the PL intensity and excitation power density in the 0.001 W/cm2 to 10 MW/cm2 range. Time resolved PL of one of these DHs suggest a recombination lifetime on the order of 520 ps.


2012 ◽  
Vol 727-728 ◽  
pp. 293-298
Author(s):  
E.R. Breitenbach ◽  
C.E. Costa ◽  
M.V. Folgueras ◽  
J.C.G. Milan ◽  
R.J. Antonelli ◽  
...  

Dispersion strengthened aluminium composites have been prepared by mechanical alloying. At this work were studied the turning conditions to getin situformation and dispersion of Al4C3on 2024 alloy by graphite addition. The alloy matrix was obtained by attrition milling a mixture of starting powders; further additions of carbon (2,5; 5 and 10% wt) were performed by means of a planetary mill. Through an adequate sintering the reinforcement formation was showed by X-Ray diffraction analysis of powders with milling times next to 20 hours. The microhardness values appointed that mechanical properties were held even soft material addition (graphite) and improved by age hardening. Pin-on-disc test revealed the composite have low friction coefficient, due to lubricant carbon action and enough low volumetric wear due to high hardness of bulk Al4C3reinforcement.


Sign in / Sign up

Export Citation Format

Share Document