Experimental investigation on low cycle fatigue properties of Ni-based alloy with single hole

Author(s):  
Zhenwei Li ◽  
Hangshan Gao ◽  
Zhaohan Wang ◽  
Yanchao Zhao ◽  
Zhixun Wen ◽  
...  

Abstract The low-cycle fatigue properties of the Ni-based superalloy K416B with single film cooling hole were investigated. The low-cycle fatigue tests were carried out using tension cycling under stress-controlled conditions (stress ratio R = 0.1) at room temperature. The fatigue limit lives of the perforated samples were determined by the lifting method. The fracture morphologies and microstructural evolution were examined. The results showed that the fatigue crack initiated from the film cooling hole. Furthermore, fracture paths and surface morphologies of the samples were influenced significantly by the stress level. The analysis of the microstructural evolution further indicated that the fatigue failure mechanisms of the samples with a film cooling hole depended on the stress level.

2021 ◽  
Vol 1035 ◽  
pp. 292-296
Author(s):  
Zi Chao Peng ◽  
Jun Ying Sheng ◽  
Xu Qing Wang ◽  
Yue Tang

Low cycle fatigue (LCF) properties of a powder metallurgy(PM) nickel base superalloy FGH720Li were systematically studied in this work, including smooth LCF and notched LCF tested at various temperatures and different stress. The relationship between the fatigue life and applied stress was analyzed both for smooth fatigue and notch fatigue tests. The effects of loading frequency and stress ratio on LCF behavior were also studied. As an important influencing factor of the fatigue life in powder metallurgy superalloy, the effect of inclusions on LCF life was also investigated. The results showed that the fatigue properties of FGH720Li alloy was excellent, when tested at the temperature of 450°C and applied stress of 1230MPa, the fatigue life could exceed 5×104 cycles. When tested at 650°C and 1150MPa, the average fatigue life was still beyond 2×105 cycles.


2012 ◽  
Vol 268-270 ◽  
pp. 87-91
Author(s):  
Jian Jun Cui ◽  
Bing Chao Li ◽  
Guo Hua Zhang ◽  
Jian Xin Zhang ◽  
Zuo Shan Wei ◽  
...  

The tensile and low cycle fatigue tests were carried out on alumina short fibers reinforced Al-Si piston alloy composites (Al-Si MMCs). Three Al-Si MMCs reinforced with 10, 17 and 25 vol.% of alumina short fibers were prepared to investigate the effects of volume fraction on tensile and low cycle fatigue properties at room temperature (RT) and 350°C. The results showed that the tensile strength decreased with the increasing of volume fraction of fibers at RT and was slight different at 350°C. Among the three MMCs, the 17%-MMCs showed highest stress level under the low cycle fatigue tests. The fatigue cracks were usually initiated from the clustered and large size fibers near the surface of specimen, propagated along the fiber/matrix interface at RT and grew rapidly by means of broken the fibers at 350°C.


2021 ◽  
Vol 877 ◽  
pp. 55-60
Author(s):  
Lorenzo Maccioni ◽  
Eleonora Rampazzo ◽  
Filippo Nalli ◽  
Yuri Borgianni ◽  
Franco Concli

In this paper, the static and low-cycle-fatigue (LCF) behavior of wrought samples of 17-4 PH stainless steel (SS) manufactured via Selective Laser Melting (SLM) are presented. On the one hand, several scholars have studied SLM materials and literature reports a huge amount of data as for the high-cycle-fatigue (HCF) behavior. On the other hand, few are the data available on the LCF behavior of those materials. The aim of the present research is to provide reliable data for an as-build 17-4 PH steel manufactured via SLM techniques. Only with quantitative data, indeed, it is possible to exploit all the advantages that this technology can offer. In this regard, both quasi-static (QS) and low-cycle-fatigue tests were performed on Additive Manufacturing (AM) cylindrical samples. Through QS tests, the constitutive low has been defined. Strain-controlled fatigue tests on an electromechanical machine were performed on 12 samples designed according to the ASTM standard. Tests were continued also after the stabilization was reached (needed for the cyclic curve described with the Ramberg-Osgood equation) to obtain also the fatigue (ε-N) curve. Results show that the material has a softening behavior. The Basquin-Coffin-Manson (BCM) parameters were tuned on the basis of the ε-N combinations after rupture.


2012 ◽  
Vol 622-623 ◽  
pp. 1340-1344
Author(s):  
Jian Jun Cui ◽  
Bing Chao Li ◽  
Guo Hua Zhang ◽  
Jian Xin Zhang ◽  
Zuo Shan Wei ◽  
...  

The tensile and low cycle fatigue tests were carried out on alumina short fibers reinforced Al-Si piston alloy composites (Al-Si MMCs). Three Al-Si MMCs reinforced with 10, 17 and 25 vol.% of alumina short fibers were prepared to investigate the effects of volume fraction on tensile and low cycle fatigue properties at room temperature (RT) and 350°C. The results showed that the tensile strength decreased with the increasing of volume fraction of fibers at RT and was slight different at 350°C. Among the three MMCs, the 17%-MMCs showed highest stress level under the low cycle fatigue tests. The fatigue cracks were usually initiated from the clustered and large size fibers near the surface of specimen, propagated along the fiber/matrix interface at RT and grew rapidly by means of broken the fibers at 350°C.


1981 ◽  
Vol 103 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Y. J. Park ◽  
D. H. Stone

In order to evaluate the material properties of Class U wheel steel under cyclic loading, low-cycle fatigue tests were conducted at room temperature on specimens taken from the rim of the wheel. The test results show that Class U wheel steel experiences significant cyclic softening at lower strains, but cyclically hardens at larger strain levels. Due to the cyclic softening at lower strain levels, the steel will plastically deform, even at stresses of about one-half of the monotonic yield strength. Quantitative fatigue properties, which can then be used to predict accurate fatigue lives of various components of wheels under complex service environments, are also obtained from the low-cycle fatigue tests.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 811
Author(s):  
Shuo Weng ◽  
Yuhui Huang ◽  
Mingliang Zhu ◽  
Fuzhen Xuan

The degradation of mechanical properties of materials is essentially related to microstructural changes under service loadings, while the inhomogeneous degradation behaviors along welded joints are not well understood. In the present work, microstructural evolution under low-cycle fatigue in base metal (BM) and weld metal (WM) of NiCrMoV steel welded joints were investigated by miniature tensile tests and microstructural observations. Results showed that both the yield strength and ultimate tensile strength of the BM and WM decreased after low-cycle fatigue tests, which were attributed to the reduction of dislocation density and formation of low-energy structures. However, the microstructural evolution mechanisms in BM and WM under the same cyclic loadings were different, i.e., the decrease of dislocation density in BM was attributed to the dislocation pile-ups along the grain boundaries, dislocation tangles around the carbides at the lower strain amplitudes (±0.3% or ±0.5%). Additionally, when the strain amplitude was ±8%, the dislocation density was further decreased by the formation of subgrains in BM. For WM, the dislocation density decreased with the increase of strain amplitude, which was mainly caused by the dislocation pile-ups along the grain boundaries and the formation of subgrains.


2021 ◽  
Author(s):  
Ke Wang

A newly-developed rare earth-containing ME20 magnesium alloy was studied in this thesis. As a potential structural material for applications in automotive industry, low cycle fatigue properties are inevitably required. Strain-controlled low cycle fatigue tests were conducted on this wrought alloy with different specimen orientations. Microstructure, tensile behaviors and low cycle fatigue properties were studied. The effect of different specimen orientations on microstructures and mechanical properties were also discussed. Results show that rare earth element addition in this alloy helped weaken the texture and specimen orientations had little influence over microstructure and fatigue properties of this magnesium alloy.


Author(s):  
Hiroshi Nakamura ◽  
Masahiro Takanashi ◽  
Yu Itabashi ◽  
Hiroshi Kuroki ◽  
Yusuke Ueda

This study investigates the shot peening effect on low cycle fatigue properties of two turbo engine materials, Ti-6Al-4V and Inconel 718, in view of the residual stress relaxation by the cyclic load and the thermal relaxation. Strain controlled fatigue tests for Ti-6Al-4V were carried out at room temperature. The fatigue tests for Inconel 718 were conducted at room temperature and 620C. An X-ray diffraction method was used to measure the residual stresses induced by shot peening. The compressive residual stress of Ti-6Al-4V specimen had retained about 60% after half the number of cycles to failure. It is confirmed that shot peening enhances strain range capability of Ti-6Al-4V at the life between 104 and 105 cycles region about 1.5 times higher than that of non-peened specimen. This result is attributed to the retained compressive layer even after applied cyclic loading. Shot peening enhanced the strain range capability of the Inconel 718 specimen at room temperature, by a factor of 1.3 compared to polished specimen at the life of 104 cycles region. The residual stress near the surface has been relaxed rapidly at turbine engine temperature, however, the residual stresses in the deep subsurface have been retained. The peened specimen tested at 620C tended to be slightly higher strain range than those of polished specimen at the life of 105 cycles.


2010 ◽  
Vol 636-637 ◽  
pp. 1504-1510
Author(s):  
D.W.J. Tanner ◽  
A.A. Becker ◽  
Thomas H. Hyde

The testing setups, results and analysis of constant load creep and low-cycle high temperature fatigue tests of tungsten inert gas (TIG) butt-welded, thin-section INCONEL 718 (IN718) specimens are presented. The main objectives were to determine the effect the welds have on failure time and analyse any differences in their failure behaviour. It was found that although welded IN718 may exhibit comparatively little loss of tensile strength, its ductility and creep and high temperature fatigue properties are severely compromised due to its changed microstructure.


2006 ◽  
Vol 118 ◽  
pp. 71-76 ◽  
Author(s):  
Jae Keun Hong ◽  
Ji Hong Park ◽  
Nho Kwang Park ◽  
Seong Jun Kim ◽  
Chung Yun Kang

Effects of solution treatment on the microstructure and mechanical properties in wrought Alloy 718 were investigated. For the improvement of tensile and fatigue properties of wrought Alloy 718, a modified solution heat treatment(MSHT), heating at 1000 for 3 minutes followed by furnace cooling at the rate of 3/minute and holding at 985 for 8 minutes, was proposed. This treatment was performed repeatedly 3 times and the samples were subject to the standard aging treatment. For the purpose of comparison, a standard heat treatment(SHT) was also performed. The microstructures of modified solution heat treated specimens showed that small spherical shaped δ- phases were precipitated without grain growth, and the amount of δ-phases was smaller than that of standard heat treated specimens. However, the δ-phases of the standard heat-treated specimen showed needle-like morphologies. Tensile and low cycle fatigue tests were performed on both modified heat-treated and standard heat-treated specimens at room temperature, 350 and 650. Low cycle fatigue tests on the modified heat treated specimens showed promising results without reduction of strength. However, the tensile properties of modified solution treated specimens was almost the same as those of standard heat treated materials both at room temperature and 650.


Sign in / Sign up

Export Citation Format

Share Document