Mixed Convection Boundary Layer Flow of Williamson Fluid with Slip Conditions Over a Stretching Cylinder by Using Keller Box Method

Author(s):  
T. Salahuddin ◽  
M. Y. Malik ◽  
Arif Hussain ◽  
M. Awais ◽  
S. Bilal

AbstractThe aim of the present analysis is to examine the effects of slip boundary conditions and mixed convection flow of Williamson fluid over a stretching cylinder. The boundary layer partial differential equations are transformed into ordinary differential equations by using group theory transformations. The required ordinary differential equations are solved numerically by using implicit finite difference method known as Keller box method. The influence of dimensionless physical parameters on velocity and temperature profile as well as skin friction coefficient and local Nusselt number are presented graphically. Comparison has been made to the previous literature in order to check the accuracy of the method.

Author(s):  
Mohamad Alif Ismail ◽  
Nurul Farahain Mohammad ◽  
Sharidan Shafie

In this paper, the unsteady magnetohydrodynamics (MHD) mixed convection flow of nanofluid at lower stagnation point past a sphere is studied. Nanoparticles Cu and TiO2 with water as a base fluid are considered. The separation times of the flow as the boundary layer start to separate at the surface of the sphere are given attention. The governing boundary layer equations in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. Results of the separation times of boundary layer flow for viscous and nanofluid influenced by magnetic parameter and volume fraction are shown in tabular form and analysed. This study concluded that the separation times can be delayed by added more magnetic particles and small amount the volume fraction.


Author(s):  
Nadeem Abbas ◽  
M. Y. Malik ◽  
Sohail Nadeem ◽  
Shafiq Hussain ◽  
A. S. El-Shafa

Stagnation point flow of viscoelastic second grade fluid over a stretching cylinder under the thermal slip and magnetic hydrodynamics effects are studied. The mathematical model has been developed under the assumption of non-Newtonian viscoelastic fluid flow over a stretching cylinder by means of the boundary layer approximations. The developed model further reduced through the similarity transformations and constructs the model of nonlinear ordinary differential equations. The system of nonlinear differential equations is dimensionless and solved through the numerical technique bvp5c methods. The results of the physical parameters are found and interpreted in the form of tables and graphs. The velocity shows that the graph of curves enhances away from the surface when the values material parameter [Formula: see text] increase, which means the momentum boundary layer increases for enhancing the material parameter [Formula: see text]. The temperature gradient reduced due enhancing the values of material parameter [Formula: see text] because thermal boundary layer reduced for higher values of material parameter [Formula: see text].


2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Noraihan Afiqah Rawi ◽  
Abdul Rahman Mohd Kasim ◽  
Mukheta Isa ◽  
Sharidan Shafie

This paper studies unsteady mixed convection boundary layer flow of heat and mass transfer past an inclined stretching sheet associated with the effect of periodical gravity modulation or g-jitter. The temperature and concentration are assumed to vary linearly with x, where x is the distance along the plate. The governing partial differential equations are transformed to a set of coupled ordinary differential equations using non-similarity transformation and solved numerically by Keller-box method. Numerical results for velocity, temperature and concentration profiles as well as skin friction, Nusselt number and Sherwood number are presented and analyzed for different values of inclination angle parameter.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Srimanta Maji ◽  
Akshaya K. Sahu

AbstractThe study of boundary layer flow under mixed convection has been investigated numerically for various nanofluids over a semi-infinite flat plate which has been placed vertically upward for both buoyancy-induced assisting and buoyancy-induced opposing flow cases. To facilitate numerical calculations, a suitable transformation has been made for the governing partial differential equations (PDEs). Then, similarity method has been applied locally to approximate the nonlinear PDEs into a coupled nonlinear ordinary differential equations (ODEs). Then, quasilinearization method has been taken for linearizing the nonlinear terms which are present in the governing equations. Thereafter, implicit trapezoidal rule has been taken for integration numerically along with principle of superposition. The effect of physical parameters which are involved in the study are analyzed on the flow and heat transfer characteristics. This study reveals the presence of dual solutions in case of opposing flow. Further, this study shows that with increasing $$\phi$$ ϕ and Pr, the range of existence of dual solutions becomes wider. Also, it has been noted that nanofluids enhance the process of heat transfer for buoyancy assisting flow and it delays the separation point in case of opposing flow.


2017 ◽  
Vol 21 (2) ◽  
pp. 849-862 ◽  
Author(s):  
Tasawar Hayat ◽  
Sajid Qayyum ◽  
Muhammad Farooq ◽  
Ahmad Alsaedi ◽  
Muhammad Ayub

This paper addresses double stratified mixed convection boundary layer flow of Jeffrey fluid due to an impermeable inclined stretching cylinder. Heat transfer analysis is carried out with heat generation/absorption. Variable temperature and concentration are assumed at the surface of cylinder and ambient fluid. Non-linear partial differential equations are reduced into the non-linear ordinary differential equations after using the suitable transformations. Convergent series solutions are computed. Effects of various pertinent parameters on the velocity, temperature, and concentration distributions are analyzed graphically. Numerical values of skin friction coefficient, Nusselt, and Sherwood numbers are also computed and discussed.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3138 ◽  
Author(s):  
Sheikh Irfan Ullah Khan ◽  
Ebraheem Alzahrani ◽  
Umar Khan ◽  
Noreena Zeb ◽  
Anwar Zeb

In this article, the impact of effective Prandtl number model on 3D incompressible flow in a rotating channel is proposed under the influence of mixed convection. The coupled nonlinear system of partial differential equations is decomposed into a highly nonlinear system of ordinary differential equations with aid of suitable similarity transforms. Then, the solution of a nonlinear system of ordinary differential equations is obtained numerically by using Runge–Kutta–Fehlberg (RKF) method. Furthermore, the surface drag force C f and the rate of heat transfer N u are portrayed numerically. The effects of different emerging physical parameters such as Hartmann number (M), Reynold’s number (Re), squeezing parameter ( β ), mixed convection parameter λ , and volume fraction ( φ ) are also incorporated graphically for γ — alumina. Due to the higher viscosity and thermal conductivity ethylene-based nanofluids, it is observed to be an effective common base fluid as compared to water. These observations portrayed the temperature of gamma-alumina ethylene-based nanofluids rising on gamma-alumina water based nanofluids.


2013 ◽  
Vol 18 (4) ◽  
pp. 1151-1164 ◽  
Author(s):  
G.V.R. Reddy ◽  
B.A. Reddy ◽  
N.B. Reddy

Abstract The effects of thermal radiation and mass transfer on an unsteady hydromagnetic boundary layer mixed convection flow along a vertical porous stretching surface with heat generation are studied. The fluid is assumed to be viscous and incompressible. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables. Numerical solutions of these equations are obtained by using the Runge-Kutta fourth order method along with the shooting technique. Velocity, temperature, concentration, the skin-friction coefficient, Nusselt number and Sherwood number for variations in the governing thermo physical parameters are computed, analyzed and discussed.


AIP Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 107227 ◽  
Author(s):  
M. Y. Malik ◽  
T. Salahuddin ◽  
Arif Hussain ◽  
S. Bilal ◽  
M. Awais

2016 ◽  
Vol 12 (7) ◽  
pp. 6412-6421
Author(s):  
Ajala O.A ◽  
Aseelebe L. O ◽  
Ogunwobi Z. O

A steady two dimensional boundary layer flow and heat transfer with variable viscosity electrically conducting fluid at T in the presence of magnetic fields and thermal radiation was considered. The governing equations which are partial differential equations were transformed into ordinary differential equations using similarity variables, and the resulting coupled ordinary differential equations were solved using collocation method in MAPLE 18. The velocity and temperature profiles were studied graphically for different physical parameters. The effects of the parameters on velocity and temperature profile were showed.


2019 ◽  
Vol 1 (1) ◽  
pp. 19-37
Author(s):  
Abdulazeez Sheriff ◽  
Murtala Sani

In this paper, Hydromagnetic mixed convection flow of an exothermic fluid in a vertical channel is considered. The dimensionless ordinary differential equations were solved using differential transformation method (DTM) to obtain the expression of velocity, temperature and concentration. From momentum, energy and mass equations.  The effect of Skin friction, Nusselt number and Sherwood number with various parameters on velocity, temperature and concentration are presented and discussed. The result indicated that the effect of t, is to increase the Skin friction while K increases it at upper plate and suppresses it at lower plate.


Sign in / Sign up

Export Citation Format

Share Document