Synthesis of a Flame Retardant for Epoxy Resins: Thermal Stability, Flame Retardancy, and Flame-Retardant Modes

2021 ◽  
Vol 36 (2) ◽  
pp. 172-184
Author(s):  
Y. Zhang ◽  
J. Liu ◽  
S. Li

Abstract A polyphosphonate (PDPA) flame retardant that contains phenyl phosphonic dichloride and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide groups, has been synthesized. The flame retardant was introduced into epoxy resins (EP) and cured by 4,4’-diamino diphenylmethane. The vertical burning, limited-oxygen index and cone calorimeter tests reveal that the PDPA can enhance the flame-retardant properties of the EP significantly. With only a 4 wt% PDPA loading, the EP composites achieved a limited-oxygen index value of 33.4% and a V-0 rating in the vertical burning test, and the peak heat release rate and total heat release were decreased by 40.9% and 24.6%, respectively. The thermal properties and gas pyrolysis products of the EP composites were evaluated by thermogravimetric analysis and thermogravimetric analysis-Fourier transform infrared spectroscopy, and the morphology and structure of residual char were characterized by scanning electron microscopy, Flourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. To explain the combined effects of the condensed and gas phases, modes of the flame-retardant action are proposed.

2020 ◽  
Vol 38 (3) ◽  
pp. 235-252
Author(s):  
Zhaojun Lin ◽  
Qianqiong Zhao ◽  
Ruilan Fan ◽  
Xiaoxue Yuan ◽  
Fuli Tian

In this work, a halogen-free intumescent combining phosphorus and nitrogen, flame-retardant 2-((2-hydroxyphenyl)(phenylamino)methyl5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (HAPO) was successfully synthesized. It had been synthesized by reaction of 5,5-dimethyl-1,3, 2-dioxphosphinane 2-oxide with Schiff base. Its chemical structure was characterized in detail by Fourier transform infrared spectroscopy, 1H NMR, and 31P NMR spectrum. The flame-retardant polyurethanes were prepared with different loadings of HAPO. The thermal properties, flame retardancy and combustion behavior of the pure polyurethane foam thermosets were investigated by a series of measurements involving thermogravimetric analysis, limited oxygen index measurement, UL-94 vertical burning test, and cone calorimeter test. The results of the aforementioned tests indicated that HAPO can significantly improve the flame retardancy as well as smoke inhibition performance of polyurethane foam. Compared with the PU-Neat, the limited oxygen index of flame-retardant polyurethanes (15%) thermoset was increased from 19.5% to 23.8% and its UL-94 reached V-0 rating. In addition, the cone test results showed that the heat release rate, total heat release, rate of smoke release, and total smoke production of flame-retardant polyurethanes (10%) were decreased obvious sly. The apparent morphology of carbon residue was characterized by scanning electron microscopy, and results revealed that the modified polyurethane foam can form dense carbon layer after combustion. Thermogravimetric analysis results also indicated that the char amount of flame-retardant polyurethanes was obviously increased compared with PU-Neat. Based on the above analysis, we can draw the conclusions which in the condensed phase, phosphorus-based acids from the degradation of HAPO, this could promote the formation of continuous and dense phosphorus-rich carbon layer. In the gas phase, the flame-retardant mechanism was ascribed to the quenching effect of phosphorus-based radicals and diluting effect by non-flammable gases.


2016 ◽  
Vol 53 (1) ◽  
pp. 45-63 ◽  
Author(s):  
Kun Wang ◽  
Jingjing Wang ◽  
Dan Zhao ◽  
Wentao Zhai

In this study, flame-retardant poly(lactic acid) foams with satisfactory cell structures were prepared by microcellular foaming technology using phosphorus-containing flame retardant and graphene as the charring agent. The introduction of 5–30 wt% flame retardant increased the limited oxygen index value of poly(lactic acid) from 19.0 to 26.5–37.8% and simultaneously increased the foam expansion of poly(lactic acid) foams from 4.4 to 5.8–17.5. In addition, all the prepared poly(lactic acid)/flame-retardant composites passed the UL-94 V-0 rating. The addition of 0.5 wt% graphene increased the limited oxygen index value of poly(lactic acid)/flame-retardant composite with flame-retardant content of 15 wt% from 27.9 to 29.2%, and more graphene additions improved the antidripping behavior of poly(lactic acid) composites. The possible mechanisms of the effects of the resultant cellular structure on the flame-retardant properties of poly(lactic acid) composites were also discussed.


2011 ◽  
Vol 295-297 ◽  
pp. 315-318
Author(s):  
Hong Fang Zhu ◽  
Juan Li ◽  
Liang Xu ◽  
Kang Tao ◽  
Li Xin Xue ◽  
...  

This Montmorillonite modified by melamine (MA-MMT) was prepared via cation exchange reaction by using melamine salt as intercalation reagent. MA-MMT and Na-MMT was combined with intumescent flame retardant (IFR) to be adopted into polypropylene (PP), respectively. The synergistic effect between MA-MMT and IFR and the influence of melamine in MMT layers on fire-resistant performance was evaluated. Results of limited oxygen index (LOI) tests and UL-94 tests indicate that melamine salts in MMT layers behaved better than Na-MMT in PP/IFR system. According to the results of cone calorimeter tests and scanning electron microscope (SEM), it concludes that melamine salts act as gas agent to provide migration impetus and expanded power, which caused a well-structured and strong char that had better ability to endure heat erosion. A good synergistic effect between MA-MMT and IFR is constructed.


2015 ◽  
Vol 1120-1121 ◽  
pp. 519-522
Author(s):  
Xiao Wen Ren ◽  
Ya Ping Zhu ◽  
Fan Wang ◽  
Hui Min Qi

Phenolic resin modified with methylvinylcyclosilazanes (MVSZ) were prepared and their flame-retardant properties were investigated, and results exhibited that the Limited Oxygen Index (LOI) values increased with the content increasing of MVSZ, and the LOI reach to 40.8, when the content of MVSZ was 26.0%. The flame-retardant and mechanical properties of polyester fabrics reinforced phenolic resin modified with silazanes (PFMS) composites were measured, the results indicated that the LOI and flexural strength were enhanced compared with those of phenolic resins composites.


2009 ◽  
Vol 3 (4) ◽  
pp. 269-276
Author(s):  
Zbigniew K. Brzozowski ◽  
◽  
Sylwia Staszczak ◽  
Pawel Koziol ◽  
Wojciech Zatorski ◽  
...  

The curing system for newly developed solid state fire safe epoxy resins using dicyandiamide (DICY) was introduced. Composites of epoxy resins obtained from diglycidyl ether of 1,1-dichloro-2,2bis(4-hydroxyphenyl)ethylene bisphenol-C (BPC) and bisphenol-A (BPA) epoxy resins in the reaction with BPC and BPA and DICY hardener were studied. Solid epoxy resins were synthesised by the use of two different heating methods: conventional and microwave reactor. The quantities of DICY additions were 0.5–5.0 %, optimum was found to be 3 %. Limited oxygen index (OI) tests for different epoxy resins and addition of flame – retardants were carried out. The highest value of OI was 34.6. As additional flame-retardants were used zinc stannates (ZS, ZHS). Evident OI increase was noted from 27.0 for classical epoxies, 34.6 for BPC cured epoxies and 44 for cured composites with the addition of Zn/Sn flame-retardants.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 303-316
Author(s):  
Haihua Yu ◽  
Xiuhang Xu ◽  
Yunfei Xia ◽  
Mingzhen Pan ◽  
Nighat Zarshad ◽  
...  

AbstractAccording to the concept of fire life cycle assessment (LCA), a new type of intumescent flame retardant was designed and synthesized by chemically bonding chitosan, phosphorus pentoxide and melamine. The resultant compound, chitosan ethoxyl melamine phosphate (CEMP), was characterized by FTIR, 1H NMR, 31P NMR, XRD and SEM. The performance of CEMP and organic montmorillonite (OMMT) was evaluated in the substrate of epoxy resin (EP) with limited oxygen index (LOI), UL-94, cone calorimetric test (CCT), TGA and TG-IR. As a result, intumescent flame retardant EP (EP3) containing 30.6% LOI and V-0 rating was prepared by adding 3 wt% OMMT and 15 wt% CEMP. The CCT results indicated that CEMP and OMMT reduced the peak of heat release rate (PHRR) to about one fourth that of pure EP and total heat release (THR), 1/2. Decomposition of EP and EP3 was traced from 100 to 600°C by TG-IR.


2011 ◽  
Vol 396-398 ◽  
pp. 1287-1290
Author(s):  
Qing Yu ◽  
Xin Jin Li ◽  
Zhong Wei Wang

A novel flame retardant of methylmethoxyphosphonate aluminium (MMPA) was synthesized via the reaction of anhydrous aluminum chloride and dimethyl methylphosphonate (DMMP). The effects of introducing order of reactants, reaction time and washing agents were investigated to get pure target compound with higher yields.Application experiments indicates that MMPA is an effective flame retardant for PBT, especially when it is used in intumescent flame retardant(IFR) systems. When the composition of IFR is 20% wt., the limited oxygen index(LOI) value of the IFR-PBT is 30 and can pass the UL94 V-0 test.


2021 ◽  
Author(s):  
Fang Xu ◽  
Guangxian Zhang ◽  
Peng Wang ◽  
Fangyin Dai

Abstract A casein derivative (CADP) was synthesized using casein, which is bifunctional containing both –P=O(O-NH4+)2 reactive groups and -P(=O)-O-C- groups, and the durable flame-retardant cotton fabrics were successfully prepared by CADP. The –P=O(O-NH4+)2 reactive groups allowed CADP to be firmly grafted onto cellulose. The –P(=O)-O-C- groups made flame-retardant cotton fabrics more resistant to soaping and improved its durability. The modification by 40% CADP increased the limited oxygen index value (LOI) of cotton fabric from 17.4% to 41.6%, which maintained at 26.4% after 50 cycles of home machine washes. The results of TG, TG-FTIR and SEM indicated that CADP increased the condensed components and decreased the flammable gaseous compounds, resulting the positive effect on char formation of cellulose. The whiteness and tensile strength of cotton fabrics were retained well after modification, and the treated cotton fabrics didn’t have skin irritation.


2020 ◽  
Vol 38 (4) ◽  
pp. 333-347
Author(s):  
Lichen Zhang ◽  
Deqi Yi ◽  
Jianwei Hao

The flame retardant poly(diallyldimethylammonium) and polyphosphate polyelectrolyte complex and the curing agent m-Phenylenediamine were blended into diglycidyl ether of bisphenol A (DGEBA)-type epoxy resin to prepare flame-retardant epoxy resin thermosets. The effects of poly(diallyldimethylammonium) and polyphosphate on fire retardancy and thermal degradation behavior of epoxy resins (EP)/poly(diallyldimethylammonium) and polyphosphate composites were tested by Limiting Oxygen Index, UL-94, cone calorimeter tests, and thermogravimetric analysis and compared with pure EP. The results showed that the Limiting Oxygen Index value of EP/poly(diallyldimethylammonium) and polyphosphate composite could reach 31.9%, and UL-94 V-0 rating at 10 wt% poly(diallyldimethylammonium) and polyphosphate loading. Meanwhile the cone calorimetry peak heat release rate and total heat release were reduced up to 55.2% and 21.8%, respectively; smoke production rate and total smoke production were also declined significantly, compared with those of pure epoxy resins. Poly(diallyldimethylammonium) and polyphosphate played a very good flame-retardant effect on epoxy resins.


2021 ◽  
pp. 095400832110499
Author(s):  
Xiao Han ◽  
Rui Chen ◽  
Mei Yang ◽  
Chuanbo Sun ◽  
Kun Wang ◽  
...  

We successfully prepared a highly effective flame-retardant additive called hsalbenzoguanamine phosphaphenanthrene (HDPD) through salicylaldehyde and nitrogen-rich benzoguanamine. The introduction of HDPD into epoxy resin (EP) sharply enhanced the flame retardancy of EP/HDPD thermosets. The introduction of 6 wt% HDPD into EP succeeded in reaching the V-0 rating. Limited oxygen index results revealed the high flame-retarding performance of HDPD. Cone calorimeter test data revealed that heat and smoke released from EP/6 wt% HDPD thermoset were significantly restrained. In addition, EP/6 wt% HDPD thermoset demonstrated excellent transmittance and mechanical strength. The transmittance of EP/6 wt% HDPD was assessed from 520 to 800 nm. The results showed that transmittance of EP/6 wt% HDPD were nearly 90% of the control group.


Sign in / Sign up

Export Citation Format

Share Document