Can pulse wave velocity (PWV) alone express arterial stiffness? A neglected tool for vascular function assessment

Author(s):  
Mariarosaria De Luca ◽  
Olimpia Iacono ◽  
Valeria Valente ◽  
Federica Giardino ◽  
Giulia Crisci ◽  
...  

Abstract Arterial stiffness, defined as the rigidity of the arterial wall, is the consequence of vascular aging and is associated with the full spectrum of cardiovascular diseases. Carotid-femoral pulse wave velocity (cf-PWV) is the gold standard method for arterial stiffness evaluation: it measures the velocity of the arterial pulse along the thoracic and abdominal aorta alongside arterial distensibility. Its value rises as stiffness progresses. Cf-PWV is helpful to assess residual cardiovascular risk (CVR) in hypertension (HT). In fact, an increase in pulsatility and arterial stiffness predicts CVR in patients affected by arterial HT, independently of other risk factors. Arterial stiffness can predict cardiovascular events in several other clinical conditions such as heart failure, diabetes, and pulmonary HT. However, cf-PWV has not been yet included in routine clinical practice so far. A possible reason might be its methodological and theoretical limitations (inaccuracy in the traveled distance, intra and interindividual variability, lack of well-defined references values, and age- and blood pressure-independent cutoff). To exceed these limits a strict adherence to guidelines, use of analytical approaches, and possibility of integrating the results with other stiffness examinations are essential approaches.

2015 ◽  
Vol 309 (12) ◽  
pp. R1540-R1545 ◽  
Author(s):  
Jisok Lim ◽  
Miriam E. Pearman ◽  
Wonil Park ◽  
Mohammed Alkatan ◽  
Daniel R. Machin ◽  
...  

Although the associations between chronic levels of arterial stiffness and blood pressure (BP) have been fairly well studied, it is not clear whether and how much arterial stiffness is influenced by acute perturbations in BP. The primary aim of this study was to determine magnitudes of BP dependence of various measures of arterial stiffness during acute BP perturbation maneuvers. Fifty apparently healthy subjects, including 25 young (20–40 yr) and 25 older adults (60–80 yr), were studied. A variety of BP perturbations, including head-up tilt, head-down tilt, mental stress, isometric handgrip exercise, and cold pressor test, were used to encompass BP changes induced by physical, mental, and/or mechanical stimuli. When each index of arterial stiffness was plotted with mean BP, all arterial stiffness indices, including cardio-ankle vascular index or CAVI ( r = 0.50), carotid-femoral pulse wave velocity or cfPWV ( r = 0.51), brachial-ankle pulse wave velocity or baPWV ( r = 0.61), arterial compliance ( r = −0.42), elastic modulus ( r = 0.52), arterial distensibility ( r = −0.32), β-stiffness index ( r = 0.19), and Young's modulus ( r = 0.35) were related to mean BP (all P < 0.01). Changes in CAVI, cfPWV, baPWV, and elastic modulus were significantly associated with changes in mean BP in the pooled conditions, while changes in arterial compliance, arterial distensibility, β-stiffness index, and Young's modulus were not. In conclusion, this study demonstrated that BP changes in response to various forms of pressor stimuli were associated with the corresponding changes in arterial stiffness indices and that the strengths of associations with BP varied widely depending on what arterial stiffness indices were examined.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Alejandro Díaz ◽  
Cintia Galli ◽  
Matías Tringler ◽  
Agustín Ramírez ◽  
Edmundo Ignacio Cabrera Fischer

In medical practice the reference values of arterial stiffness came from multicenter registries obtained in Asia, USA, Australia and Europe. Pulse wave velocity (PWV) is the gold standard method for arterial stiffness quantification; however, in South America, there are few population-based studies. In this research PWV was measured in healthy asymptomatic and normotensive subjects without history of hypertension in first-degree relatives. Normal PWV and the 95% confidence intervals values were obtained in 780 subjects (39.8 ± 18.5 years) divided into 7 age groups (10–98 years). The mean PWV found was 6.84 m/s ± 1.65. PWV increases linearly with aging with a high degree of correlation (r2=0.61;P<0.05) with low dispersion in younger subjects. PWV progressively increases 6–8% with each decade of life; this tendency is more pronounced after 50 years. A significant increase of PWV over 50 years was demonstrated. This is the first population-based study from urban and rural people of Argentina that provides normal values of the PWV in healthy, normotensive subjects without family history of hypertension. Moreover, the age dependence of PWV values was confirmed.Corrigendum to “Reference Values of Pulse Wave Velocity in Healthy People from an Urban and Rural Argentinean Population”


Author(s):  
Sigita Kazūne ◽  
Andris Grabovskis ◽  
Eva Strīķe ◽  
Indulis Vanags

Abstract Sepsis is characterised by massive inflammatory response, which can affect vascular function. This study was designed to assess the impact of early severe sepsis and septic shock on arterial stiffness and the relationship of this impact to outcome. Twelve patients with severe sepsis and 22 with septic shock were included in the study. We measured carotid to femoral and carotid to radial pulse wave velocity (PWV), an index of aortic and brachial arterial stiffness, in patients with early severe sepsis and septic shock within 24 hours of admission to intensive care unit and repeatedly after 48 hours. No difference was observed between patients with severe sepsis and septic shock regarding carotid to femoral PWV (11.7 ± 2.2 vs. 11.3 ± 3.6 m/s) and carotid to radial PWV (12.0 ± 3.8 vs. 9.5 ± 2.2 m/s). On 48 hour follow-up, PWV did not significantly differ between survivors and non-survivors. A positive, similar correlation occurred between PWV and pulse pressure in all patients (r = 0.35, p = 0.05), and there was a negative correlation between PWV and C-reactive protein levels (r = -0.43, p = 0.04). In conclusion, PWV is not affected by disease severity or prognosis.


Angiology ◽  
2021 ◽  
pp. 000331972110211
Author(s):  
Buyun Jia ◽  
Chongfei Jiang ◽  
Yun Song ◽  
Chenfangyuan Duan ◽  
Lishun Liu ◽  
...  

Increased arterial stiffness is highly prevalent in patients with hypertension and is associated with cardiovascular (CV) risk. Increased white blood cell (WBC) counts may also be an independent risk factor for arterial stiffness and CV events. The aim of the study was to investigate the relationship between differential WBC counts and brachial-ankle pulse wave velocity (baPWV) in hypertensive adults. A total of 14 390 participants were included in the final analysis. A multivariate linear regression model was applied for the correlation analysis of WBC count and baPWV. Higher WBC counts were associated with a greater baPWV: adjusted β = 10 (95% CI, 8-13, P < .001). The same significant association was also found when WBC count was assessed as categories or quartiles. In addition, the effect of differential WBC subtypes, including neutrophil count and lymphocyte count on baPWV, showed the similar results. These findings showed that baPWV has positive associations with differential WBC counts in hypertensive adults.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Hee Haam ◽  
Young-Sang Kim ◽  
Doo-Yeoun Cho ◽  
Hyejin Chun ◽  
Sang-Woon Choi ◽  
...  

AbstractRecent evidence suggests that cellular perturbations play an important role in the pathogenesis of cardiovascular diseases. Therefore, we analyzed the association between the levels of urinary metabolites and arterial stiffness. Our cross-sectional study included 330 Korean men and women. The brachial-ankle pulse wave velocity was measured as a marker of arterial stiffness. Urinary metabolites were evaluated using a high-performance liquid chromatograph-mass spectrometer. The brachial-ankle pulse wave velocity was found to be positively correlated with l-lactate, citrate, isocitrate, succinate, malate, hydroxymethylglutarate, α-ketoisovalerate, α-keto-β-methylvalerate, methylmalonate, and formiminoglutamate among men. Whereas, among women, the brachial-ankle pulse wave velocity was positively correlated with cis-aconitate, isocitrate, hydroxymethylglutarate, and formiminoglutamate. In the multivariable regression models adjusted for conventional cardiovascular risk factors, three metabolite concentrations (urine isocitrate, hydroxymethylglutarate, and formiminoglutamate) were independently and positively associated with brachial-ankle pulse wave velocity. Increased urine isocitrate, hydroxymethylglutarate, and formiminoglutamate concentrations were associated with brachial-ankle pulse wave velocity and independent of conventional cardiovascular risk factors. Our findings suggest that metabolic disturbances in cells may be related to arterial stiffness.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e038933
Author(s):  
Rita Salvado ◽  
Sandra Santos-Minguez ◽  
Cristina Agudo-Conde ◽  
Cristina Lugones-Sanchez ◽  
Angela Cabo-Laso ◽  
...  

IntroductionIntestinal microbiota is arising as a new element in the physiopathology of cardiovascular diseases. A healthy microbiota includes a balanced representation of bacteria with health promotion functions (symbiotes). The aim of this study is to analyse the relationship between intestinal microbiota composition and arterial stiffness.Methods and analysisAn observational case—control study will be developed. Cases will be defined by the presence of at least one of the following: carotid-femoral pulse wave velocity (cf-PWV), Cardio-Ankle Vascular Index (CAVI), brachial ankle pulse wave velocity (ba or ba-PWV) above the 90th percentile, for age and sex, of the reference population. Controls will be selected from the same population as cases. The study will be developed in Primary Healthcare Centres. We will select 500 subjects (250 cases and 250 controls), between 45 and 74 years of age. Cases will be selected from a database that combines data from EVA study (Spain) and Guimarães/Vizela study (Portugal). Measurements: cf-PWV will be measured using the SphygmoCor system, CAVI, ba-PWV and Ankle-Brachial Index will be determined using VaSera device. Gut microbiome composition in faecal samples will be determined by 16S ribosomal RNA sequencing. Lifestyle will be assessed by food frequency questionnaire, adherence to the Mediterranean diet and IPAQ (International Physical Activity Questionnaire). Body composition will be evaluated by bioimpedance.Ethics and disseminationThe study has been approved by ‘Committee of ethics of research with medicines of the health area of Salamanca’ on 14 December 2018 (cod. 2018-11-136) and the ’Ethics committee for health of Guimaraes’ (Portugal) on 15 October 2019 (ref: 67/2019). All study participants will sign an informed consent form agreeing to participate in the study, in compliance with the Declaration of Helsinki and the WHO standards for observational studies. The results of this study will allow a better description of gut microbiota in patients with arterial stiffness.Trial registration detailsClinicalTrials.gov, identifier NCT03900338


Circulation ◽  
2006 ◽  
Vol 113 (5) ◽  
pp. 664-670 ◽  
Author(s):  
Tine Willum Hansen ◽  
Jan A. Staessen ◽  
Christian Torp-Pedersen ◽  
Susanne Rasmussen ◽  
Lutgarde Thijs ◽  
...  

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Megha Murali ◽  
Carla Taylor ◽  
Peter Zahradka ◽  
Jeffrey Wigle

Background and Objective: Arterial stiffness is recognized as being an independent predictor of incipient vascular disease associated with obesity and metabolic syndrome. In obese subjects, the decrease in the plasma level of adiponectin, an anti-diabetic and anti-atherogenic adipokine, is well known. Hence the aim of our study was to examine the effect of loss of adiponectin on the development of arterial stiffness in response to a high fat diet. Methods and Results: Male 8-week old adiponectin knockout (APN KO) and C57BL/6 (control) mice were fed a high fat diet (60% Calories from fat) for 12 weeks to induce obesity and insulin resistance (n=10/group). APN KO and C57BL/6 mice were fed a low fat diet (10% Calories from fat) and used as lean controls (n=10/group). After 12 weeks on the high fat diet, the APN KO mice weighed significantly more than the C57BL/6 mice (45.1±1.3 g vs 40.1±1.1 g, p=0.0008) but there was no difference in the final weights between genotypes fed the low fat diet. APN KO mice on both high and low fat diets for 12 weeks developed insulin resistance as measured by oral glucose tolerance test (Area under curve (AUC) mmol/L х min = 437±70 and 438±57) as compared to the C57BL/6 mice fed low or high fat diets (AUC mmol/L х min = 251±27 and 245±43). Arterial stiffness was determined by Doppler pulse wave velocity analysis of the femoral artery. Pulse wave velocity was increased in APN KO mice fed a high fat diet relative to those fed the low fat diet (12.56±0.78 cm/s vs 9.47±0.95 cm/s, p=0.0035; n=8-10). Pulse wave velocity was not different between C57BL/6 control mice on the low or high fat diets (10.63±0.73 cm/s and 10.86±0.50 cm/s), thus revealing that only mice deficient in adiponectin developed arterial stiffness in response to high fat diet. Conclusions: Potentiation of the vascular stiffness in diet-induced obese APN KO mice indicates that adiponectin has a role in modulating vascular structure and the APN KO mouse models the vascular changes that occur in human obesity and metabolic disorders. Morphometric analysis of the aortic tissues for vessel thickness and expression of extracellular proteins will further validate the potential role of adiponectin on the maintenance of arterial elasticity in addition to its known effect on eNOS mediated vasoprotection.


Sign in / Sign up

Export Citation Format

Share Document