Obesity-associated sympathetic overactivity in children and adolescents: the role of catecholamine resistance in lipid metabolism

Author(s):  
Zhengtang Qi ◽  
Shuzhe Ding

AbstractObesity in children and adolescents is characterized by chronic sympathetic overdrive and reduced epinephrine-stimulated lipolysis. This resistance to catecholamines occurs during the dynamic phase of fat accumulation. This review will focus on the relationship between sympathetic-adrenal activity and lipid metabolism, thereby highlighting the role of catecholamine resistance in the development of childhood obesity.Catecholamine resistance causes lipid accumulation in adipose tissue by reducing lipolysis, increasing lipogenesis and impeding free fatty acid (FFA) transportation. Exercise improves catecholamine resistance, as evidenced by attenuated systemic sympathetic activity, reduced circulating catecholamine levels and enhanced β-adrenergic receptor signaling. Insulin resistance is mostly a casual result rather than a cause of childhood obesity. Therefore, catecholamine resistance in childhood obesity may promote insulin signaling in adipose tissue, thereby increasing lipogenesis. This review outlines a series of evidence for the role of catecholamine resistance as an upstream mechanism leading to childhood obesity.

2010 ◽  
Vol 7 (4) ◽  
pp. 8-11 ◽  
Author(s):  
N A Petunina ◽  
N E Al'tshuler ◽  
N G Rakova ◽  
L V Trukhina

The review presents a recent data from the literature on the physiologic and pathophysiologic role of adipose tissue hormones (adiponectin, resistin, leptin). The article details the role of adipocytokines in atherogenesis. It also presents the results of studies depicting the relationship between subclinical hypothyroidism, lipid metabolism and insulin resistance as well as the impact of thyroid dysfunction upon the secretion of adipocytokines.


2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Francesca Favieri ◽  
Andrea Marini ◽  
Maria Casagrande

The worldwide prevalence of obesity has dramatically increased, mostly in children and adolescents. The Emotional Eating theoretical model has proposed that the failure in emotional regulation could represent a risk factor for establishing maladaptive overeating behavior that represents an inadequate response to negative emotions and allows increasing body-weight. This systematic review investigates the relationship between overeating and both emotional regulation and emotional intelligence in childhood and adolescence, considering both cross-sectional and longitudinal studies. Moreover, another goal of the review is evaluating whether emotional regulation and emotional intelligence can cause overeating behaviors. The systematic search was conducted according to the PRISMA-statement in the databases Medline, PsychArtcles, PsychInfo, PubMed, Scopus, and Web of Sciences, and allows 484 records to be extracted. Twenty-six studies were selected according to inclusion (e.g., studies focused on children and adolescents without clinical conditions; groups of participants overweight or with obesity) and exclusion (e.g., studies that adopted qualitative assessment or cognitive-affective tasks to measure emotional variables; reviews, commentary, or brief reports) criteria detailed in the methods. Cross-sectional studies showed a negative association between emotional regulation and overeating behavior that was confirmed by longitudinal studies. These findings highlighted the role of maladaptive emotion regulation on overeating and being overweight. The relationship between these constructs in children and adolescents was consistent. The results indicated the complexity of this association, which would be influenced by many physiological, psychological, and social factors. These findings underline the need for further studies focused on emotion regulation in the development of overeating. They should analyze the mediation role of other variables (e.g., attachment style, peer pressure) and identify interventions to prevent and reduce worldwide overweight prevalence.


2018 ◽  
Vol 15 (3) ◽  
pp. 14-20
Author(s):  
Yassine Chahirou ◽  
Abdelhalim Mesfioui ◽  
Ali Ouichou ◽  
Aboubaker Hessni

Current studies show that metabolic and behavioral disorders represent severe health problems. Several questions arise about the molecular relationship of metabolic and behavioral disorders. This review will discuss the relationship of lipid metabolism and fructose consumption accompanied by an increase in weight as well as associated disorders: hypertension, insulin-resistance, oxidative stress and depression. Adipose tissue is considered as an endocrine tissue with intense secretory activities (metabolic and inflammatory). These adipokines are responsible for an alteration of several physiological functions. In this review we will try to understand how lipogenesis that causes dyslipidemia can influence insulin resistance, hypertension, oxidative stress, depression and the relationship between these various disorders.


2007 ◽  
Vol 131 (3) ◽  
pp. 481-487 ◽  
Author(s):  
Deborah Vela ◽  
L. Maximilian Buja ◽  
Mohammad Madjid ◽  
Alan Burke ◽  
Morteza Naghavi ◽  
...  

Abstract Context.—It has become increasingly evident that adipose tissue is a multifunctional organ that produces and secretes multiple paracrine and endocrine factors. Research into obesity, insulin resistance, and diabetes has identified a proinflammatory state associated with obesity. Substantial differences between subcutaneous and omental fat have been noted, including the fact that omental fat produces relatively more inflammatory cytokines. Periadventitial fat, as a specific adipose tissue subset, has been overlooked in the field of atherosclerosis despite its potential diagnostic and therapeutic implications. Objective.—To review (1) evidence for the role of adventitial and periadventitial fat in vessel remodeling after injury, (2) the relationship between adventitial inflammation and atherosclerosis, (3) the association between periadventitial fat and plaque inflammation, and (4) the diagnostic and therapeutic implications of these roles and relationships for the progression of atherosclerosis. Data Sources.—We present new data showing greater uptake of iron, administered in the form of superparamagnetic iron oxide, in the periadventitial fat of atherosclerotic mice than in control mice. In addition, macrophage density in the periadventitial fat of lipid-rich plaques is increased compared with fibrocalcific plaques. Conclusions.—There is a striking paucity of data on the relationship between the periadventitial fat of coronary arteries and atherosclerosis. Greater insight into this relationship might be instrumental in making strides into the pathophysiology, diagnosis, and treatment of coronary artery disease.


Author(s):  
Khrystyna Kvit ◽  
Viacheslav Kharchenko

 Researchers have studied the connection between cholesterol and microbiota for a long time. The results of widely published data demonstrate that the relationship between the lipid balance of the blood and the composition of the intestinal microbiota is apparent. The oblective of this study was, we tried to find the path through which this connection is carried out. Furthermore, the aim was to analyze the studies, which demonstrate the decrease of blood lipids as the result of different prebiotics and probiotics prescribtion. Also, the screening of different data from previous years was done for comparing the changes in the pathogenesis.


Endocrinology ◽  
2020 ◽  
Vol 161 (4) ◽  
Author(s):  
Qi Zhu ◽  
Jonathan Weng ◽  
Minqian Shen ◽  
Jace Fish ◽  
Zhujun Shen ◽  
...  

Abstract Apolipoprotein A-IV (ApoA-IV) synthesized by the gut regulates lipid metabolism. Sympathetic innervation of adipose tissues also controls lipid metabolism. We hypothesized that ApoA-IV required sympathetic innervation to increase fatty acid (FA) uptake by adipose tissues and brown adipose tissue (BAT) thermogenesis. After 3 weeks feeding of either a standard chow diet or a high-fat diet (HFD), mice with unilateral denervation of adipose tissues received intraperitoneal administration of recombinant ApoA-IV protein and intravenous infusion of lipid mixture with radioactive triolein. In chow-fed mice, ApoA-IV administration increased FA uptake by intact BAT but not the contralateral denervated BAT or intact white adipose tissue (WAT). Immunoblots showed that, in chow-fed mice, ApoA-IV increased expression of lipoprotein lipase and tyrosine hydroxylase in both intact BAT and inguinal WAT (IWAT), while ApoA-IV enhanced protein levels of β3 adrenergic receptor, adipose triglyceride lipase, and uncoupling protein 1 in the intact BAT only. In HFD-fed mice, ApoA-IV elevated FA uptake by intact epididymal WAT (EWAT) but not intact BAT or IWAT. ApoA-IV increased sympathetic activity assessed by norepinephrine turnover (NETO) rate in BAT and EWAT of chow-fed mice, whereas it elevated NETO only in EWAT of HFD-fed mice. These observations suggest that, in chow-fed mice, ApoA-IV activates sympathetic activity of BAT and increases FA uptake by BAT via innervation, while in HFD-fed mice, ApoA-IV stimulates sympathetic activity of EWAT to shunt FAs into the EWAT.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Xiaoliang Shao ◽  
Wei Yang ◽  
Xiaonan Shao ◽  
Chun Qiu ◽  
Xiaosong Wang ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 3118-3129 ◽  
Author(s):  
Jose M. Garcia ◽  
Thomas Scherer ◽  
Ji-an Chen ◽  
Bobby Guillory ◽  
Anriada Nassif ◽  
...  

Cachexia, defined as an involuntary weight loss ≥5%, is a serious and dose-limiting side effect of chemotherapy that decreases survival in cancer patients. Alterations in lipid metabolism are thought to cause the lipodystrophy commonly associated with cachexia. Ghrelin has been proposed to ameliorate the alterations in lipid metabolism due to its orexigenic and anabolic properties. However, the mechanisms of action through which ghrelin could potentially ameliorate chemotherapy-associated cachexia have not been elucidated. The objectives of this study were to identify mechanisms by which the chemotherapeutic agent cisplatin alters lipid metabolism and to establish the role of ghrelin in reversing cachexia. Cisplatin-induced weight and fat loss were prevented by ghrelin. Cisplatin increased markers of lipolysis in white adipose tissue (WAT) and of β-oxidation in liver and WAT and suppressed lipogenesis in liver, WAT, and muscle. Ghrelin prevented the imbalance between lipolysis, β-oxidation, and lipogenesis in WAT and muscle. Pair-feeding experiments demonstrated that the effects of cisplatin and ghrelin on lipogenesis, but not on lipolysis and β-oxidation, were due to a reduction in food intake. Thus, ghrelin prevents cisplatin-induced weight and fat loss by restoring adipose tissue functionality. An increase in caloric intake further enhances the anabolic effects of ghrelin.


Sign in / Sign up

Export Citation Format

Share Document