Molecular karyotyping in routine diagnostics – a view back and forth1)

2013 ◽  
Vol 36 (5) ◽  
Author(s):  
Uwe Heinrich ◽  
Meike Gabert ◽  
Imma Rost

AbstractSince its introduction in the routine diagnostics of patients with mental retardation/developmental delay, array-comparative genomic hybridization (aCGH) has become an indispensable tool for the detection of clinically relevant copy number variants (CNVs). Despite the current tendency for higher resolution arrays, the growing number of public internet databases as well as better calling algorithms allow save reporting and a better classification of CNVs. The application of combined aCGH plus single nucleotide polymorphism (SNP) arrays will increase detection rates by revealing copy number neutral changes, such as uniparental disomy. In the future, next generation sequencing techniques will lead to a further increase in resolution with the simultaneous detection of unbalanced and even balanced chromosomal aberrations.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 107-107
Author(s):  
Matthew J. Walter ◽  
R. Ries ◽  
X. Li ◽  
W. Shannon ◽  
J. Payton ◽  
...  

Abstract To test if small deletions or amplifications (ie. below the resolution of cytogenetics) exist in bone marrow-derived tumor DNA from acute myeloid leukemia (AML) patients (pts), we used a dense tiling path array comparative genomic hybridization (aCGH) platform consisting of 386,165 unique oligomers spaced evenly at ∼6Kb intervals across the genome. We analyzed 144 adult de novo AML pts; 64 had normal karyotypes, and 80 had 1 or 2 clonal aberrations. Similar numbers of FAB M0/1, M2, M3, and M4 pts were included, and all samples had >30% blasts (median=72%). To generate a cancer-free control set of data, we also analyzed 23 DNA samples from normal individuals matched for age and ethnicity, and with no history of cancer. Both the tumor and cancer-free control DNA samples were co-hybridized with a pool of control DNAs from blood of 4 healthy young males. To define the sensitivity and specificity of the aCGH platform, we examined its ability to detect cytogenetically defined chromosome gains and losses. Of the 33 gains and losses present in >20% of metaphases, 29 (88%) were detected by aCGH. Of the 20 gains and losses present in ≤20% of metaphases, aCGH detected only 5 (25%). Three of 63 (4.8%) balanced translocations [t(15;17), t(8;21), t(9;11)] were detected using aCGH, indicating that breakpoints of some translocations contained small deletions. Further, we identified many previously described germline copy number variants (CNVs) in both the AML pts and cancer-free controls. To improve our ability to define even smaller somatic microdeletions and amplifications, we tested 20 AML pts using CGH arrays containing 1.5 million probes per genome (average probe spacing 1.5 Kb). To preclude detection of germline CNVs, the higher resolution CGH experiments were performed comparing tumor and skin-derived DNA from the same patient. These same sample pairs were also analyzed individually with the Affymetrix 500K SNP arrays. Using stringent criteria to define abnormal segments, we identified 64 altered loci in the 20 AML pts that were not apparent cytogenetically, and that contained ≥1 gene. SNP arrays confirmed aCGH findings in 7/9 loci >100 Kb, and in 1/55 loci <100 Kb in size. In addition, SNP arrays revealed copy number neutral loss of heterozygosity of the 11p arm in 2/20 AML pts, indicating partial uniparental disomy (UPD) involving this region. We also detected somatic deletions in the T cell receptor (TCR) (n=3/20) and immunoglobulin heavy chain (n=1/20) genes, including a homozygous deletion measuring 4.3 Kb in size. The remaining loci identified with the 1.5M oligo aCGH platform were validated using quantitative PCR with matched tumor and germline DNA. Only 5/60 putative calls were validated using this approach, and include a deletion of IGFBP2, and amplifications of CROP, CPEB4, HOMER1, and ZNF148. In summary, 13 loci containing genes have been validated by SNP arrays or qPCR. No recurrent deletions or amplifications were found in the 20 AML pts. Thus, an additional 74 AML pts are being screened for evidence of recurrence at these loci. Our data suggest that an ultra-dense platform may be required to detect the majority of somatic copy number changes in AML genomes, and that UPD is relatively rare in AML pts, occurring in ∼10% of pts, and recurrent only in the 11p region.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jan Smetana ◽  
Jan Frohlich ◽  
Romana Zaoralova ◽  
Vladimira Vallova ◽  
Henrieta Greslikova ◽  
...  

Characteristic recurrent copy number aberrations (CNAs) play a key role in multiple myeloma (MM) pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH) provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91). Incidence of hyperdiploidy was 49.5% (45/91); del(13)(q14) was detected in 57.1% (52/91); gain(1)(q21) occurred in 58.2% (53/91); del(17)(p13) was observed in 15.4% (14/91); and t(4;14)(p16;q32) was found in 18.6% (16/86). Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91). Most common deletions were found at 13q (58.9%), 1p (39.6%), and 8p (31.1%), whereas gain of whole 1q was the most often duplicated region (50.6%). Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.


2021 ◽  
Vol 132 ◽  
pp. S287-S288
Author(s):  
Jianling Ji ◽  
Ryan Schmidt ◽  
Westley Sherman ◽  
Ryan Peralta ◽  
Megan Roytman ◽  
...  

2014 ◽  
Vol 171 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Ana P M Canton ◽  
Sílvia S Costa ◽  
Tatiane C Rodrigues ◽  
Debora R Bertola ◽  
Alexsandra C Malaquias ◽  
...  

BackgroundThe etiology of prenatal-onset short stature with postnatal persistence is heterogeneous. Submicroscopic chromosomal imbalances, known as copy number variants (CNVs), may play a role in growth disorders.ObjectiveTo analyze the CNVs present in a group of patients born small for gestational age (SGA) without a known cause.Patients and methodsA total of 51 patients with prenatal and postnatal growth retardation associated with dysmorphic features and/or developmental delay, but without criteria for the diagnosis of known syndromes, were selected. Array-based comparative genomic hybridization was performed using DNA obtained from all patients. The pathogenicity of CNVs was assessed by considering the following criteria: inheritance; gene content; overlap with genomic coordinates for a known genomic imbalance syndrome; and overlap with CNVs previously identified in other patients with prenatal-onset short stature.ResultsIn 17 of the 51 patients, 18 CNVs were identified. None of these imbalances has been reported in healthy individuals. Nine CNVs, found in eight patients (16%), were categorized as pathogenic or probably pathogenic. Deletions found in three patients overlapped with known microdeletion syndromes (4q, 10q26, and 22q11.2). These imbalances are de novo, gene rich and affect several candidate genes or genomic regions that may be involved in the mechanisms of growth regulation.ConclusionPathogenic CNVs in the selected patients born SGA were common (at least 16%), showing that rare CNVs are probably among the genetic causes of short stature in SGA patients and revealing genomic regions possibly implicated in this condition.


Author(s):  
Marie Coutelier ◽  
Manuel Holtgrewe ◽  
Marten Jäger ◽  
Ricarda Flöttman ◽  
Martin A. Mensah ◽  
...  

AbstractCopy Number Variants (CNVs) are deletions, duplications or insertions larger than 50 base pairs. They account for a large percentage of the normal genome variation and play major roles in human pathology. While array-based approaches have long been used to detect them in clinical practice, whole-genome sequencing (WGS) bears the promise to allow concomitant exploration of CNVs and smaller variants. However, accurately calling CNVs from WGS remains a difficult computational task, for which a consensus is still lacking. In this paper, we explore practical calling options to reach the best compromise between sensitivity and sensibility. We show that callers based on different signal (paired-end reads, split reads, coverage depth) yield complementary results. We suggest approaches combining four selected callers (Manta, Delly, ERDS, CNVnator) and a regenotyping tool (SV2), and show that this is applicable in everyday practice in terms of computation time and further interpretation. We demonstrate the superiority of these approaches over array-based Comparative Genomic Hybridization (aCGH), specifically regarding the lack of resolution in breakpoint definition and the detection of potentially relevant CNVs. Finally, we confirm our results on the NA12878 benchmark genome, as well as one clinically validated sample. In conclusion, we suggest that WGS constitutes a timely and economically valid alternative to the combination of aCGH and whole-exome sequencing.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 524 ◽  
Author(s):  
Teresa Giugliano ◽  
Marco Savarese ◽  
Arcomaria Garofalo ◽  
Esther Picillo ◽  
Chiara Fiorillo ◽  
...  

Next-generation sequencing (NGS) technologies have led to an increase in the diagnosis of heterogeneous genetic conditions. However, over 50% of patients with a genetically inherited disease are still without a diagnosis. In these cases, different hypotheses are usually postulated, including variants in novel genes or elusive mutations. Although the impact of copy number variants (CNVs) in neuromuscular disorders has been largely ignored to date, missed CNVs are predicted to have a major role in disease causation as some very large genes, such as the dystrophin gene, have prone-to-deletion regions. Since muscle tissues express several large disease genes, the presence of elusive CNVs needs to be comprehensively assessed following an accurate and systematic approach. In this multicenter cohort study, we analyzed 234 undiagnosed myopathy patients using a custom array comparative genomic hybridization (CGH) that covers all muscle disease genes at high resolution. Twenty-two patients (9.4%) showed non-polymorphic CNVs. In 12 patients (5.1%), the identified CNVs were considered responsible for the observed phenotype. An additional ten patients (4.3%) presented candidate CNVs not yet proven to be causative. Our study indicates that deletions and duplications may account for 5–9% of genetically unsolved patients. This strongly suggests that other mechanisms of disease are yet to be discovered.


Sign in / Sign up

Export Citation Format

Share Document