scholarly journals DFT/QTAIM analysis of favipiravir adsorption on pristine and silicon doped C20 fullerenes

2019 ◽  
Vol 42 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Özgür Alver ◽  
Cemal Parlak ◽  
Yunusa Umar ◽  
Ponnadurai Ramasami

Abstract Fullerenes have received attentions due to their versatile properties. Molecular structures and electronic properties namely binding energy, band gap, electrophilicity index and molecular topological analysis were studied for undoped and silicon doped C20 fullerenes and favipiravir in order to search for possible application of the systems as drug delivery vehicles. Density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) were used for the research. Molecular structures having the interaction edges of SiC19… OH in water and SiC19…C=O in gas phase were found as those most stable with binding energies of -57.28 kcal/mol and -43.46 kcal/mol correspondingly. The results and parameters found in this research may provide additional insights into drug delivery systems.

Author(s):  
Quintin Hill ◽  
Chris-Kriton Skylaris

While density functional theory (DFT) allows accurate quantum mechanical simulations from first principles in molecules and solids, commonly used exchange-correlation density functionals provide a very incomplete description of dispersion interactions. One way to include such interactions is to augment the DFT energy expression by damped London energy expressions. Several variants of this have been developed for this task, which we discuss and compare in this paper. We have implemented these schemes in the ONETEP program, which is capable of DFT calculations with computational cost that increases linearly with the number of atoms. We have optimized all the parameters involved in our implementation of the dispersion correction, with the aim of simulating biomolecular systems. Our tests show that in cases where dispersion interactions are important this approach produces binding energies and molecular structures of a quality comparable with high-level wavefunction-based approaches.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 63-66 ◽  
Author(s):  
Özgür Alver ◽  
Cemal Parlak ◽  
Ponnadurai Ramasami ◽  
Mustafa Şenyel

Abstract Piperazine and tetraone-related compounds are widely used in the drug industry. Heteroatom-doped fullerenes are studied as new types of sensor devices, and medical applications are studied as drug delivery vehicles. In this work, Si- or Al-doped C60 fullerenes and their interactions with piperazine-2,3,5,6-tetraone (ppto) molecule and some important structural or electronic properties were examined using the density functional theory (DFT). Results indicate that doped C60 fullerenes might be used to diagnose the presence of ppto as delivery vehicle and sensor because of their high adsorption energies and change of band gap energies.


2021 ◽  
Author(s):  
Matine Abdelmalek ◽  
Ali Barhoumi ◽  
Said Bayadi ◽  
Mohammed El idrissi ◽  
Mohammed Salah ◽  
...  

Abstract The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modelled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and Molecular dynamics (MD) simulations to illustrate the interactions engaged. The interaction of the azelaic acid derivatives with iron metal (Fe) was examined by DFT as a typical example of a corrosion prevention mechanism after the optimized molecular structures of these molecules were investigated. Structures, binding energies, Fikui's charge indicator, electron transfer, and chemical potential are all discussed, the presence of significant binding between the inhibitor and Fe metal is supported by analysis of the resultant complex. Then, in an acidic solution comprising 491,H2O, nine chlorine ions Cl-, and nine hydronium ions H3O+, molecular dynamic, Monte Carlo (MC) simulation were used to model the adsorption of azelaic acid dihydrazide on the iron Fe (110) surface. In addition, radial distribution function (RDF) and interaction energy (Ei) were evaluated in this work to further our understanding of interactions between azelaic acid dihydrazide and iron surfaces. Furthermore, we discovered that our inhibitors have an excellent ability to slow down the movement of corrosive particles in law temperature and thus to inhibit the metallic substrate against corrosive electrolyte, based on the temperature impact investigation. The result of density functional theory, Mont Carlo and molecular dynamic descriptors obtained were in good agreement with the experimental result.


2018 ◽  
Vol 18 (5) ◽  
pp. 439-457 ◽  
Author(s):  
Merina Mariyam ◽  
Kajal Ghosal ◽  
Sabu Thomas ◽  
Nandakumar Kalarikkal ◽  
Mahima S. Latha

2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 427
Author(s):  
Amin Mirzaaghasi ◽  
Yunho Han ◽  
So-Hee Ahn ◽  
Chulhee Choi ◽  
Ji-Ho Park

Exosomes have attracted considerable attention as drug delivery vehicles because their biological properties can be utilized for selective delivery of therapeutic cargoes to disease sites. In this context, analysis of the in vivo behaviors of exosomes in a diseased state is required to maximize their therapeutic potential as drug delivery vehicles. In this study, we investigated biodistribution and pharmacokinetics of HEK293T cell-derived exosomes and PEGylated liposomes, their synthetic counterparts, into healthy and sepsis mice. We found that biodistribution and pharmacokinetics of exosomes were significantly affected by pathophysiological conditions of sepsis compared to those of liposomes. In the sepsis mice, a substantial number of exosomes were found in the lung after intravenous injection, and their prolonged blood residence was observed due to the liver dysfunction. However, liposomes did not show such sepsis-specific effects significantly. These results demonstrate that exosome-based therapeutics can be developed to manage sepsis and septic shock by virtue of their sepsis-specific in vivo behaviors.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3589
Author(s):  
Rui Liu ◽  
Alessandro Poma

Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samaneh Pasban ◽  
Heidar Raissi

AbstractHexakis (m-phenylene ethynylene) (m-PE) macrocycles, with aromatic backbones and multiple hydrogen-bonding side chains, had a very high propensity to self-assemble via H-bond and π–π stacking interactions to form nanotubular structures with defined inner pores. Such stacking of rigid macrocycles is leading to novel applications that enable the researchers to explored mass transport in the sub-nanometer scale. Herein, we performed density functional theory (DFT) calculations to examine the drug delivery performance of the hexakis dimer as a novel carrier for doxorubicin (DOX) agent in the chloroform and water solvents. Based on the DFT results, it is found that the adsorption of DOX on the carrier surface is typically physisorption with the adsorption strength values of − 115.14 and − 83.37 kJ/mol in outside and inside complexes, respectively, and so that the essence of the drug remains intact. The negative values of the binding energies for all complexes indicate the stability of the drug molecule inside and outside the carrier's cavities. The energy decomposition analysis (EDA) has also been performed and shown that the dispersion interaction has an essential role in stabilizing the drug-hexakis dimer complexes. To further explore the electronic properties of dox, the partial density of states (PDOS and TDOS) are calculated. The atom in molecules (AIM) and Becke surface (BS) methods are also analyzed to provide an inside view of the nature and strength of the H-bonding interactions in complexes. The obtained results indicate that in all studied complexes, H-bond formation is the driving force in the stabilization of these structures, and also chloroform solvent is more favorable than the water solution. Overall, our findings offer insightful information on the efficient utilization of hexakis dimer as drug delivery systems to deliver anti-cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document