Nanotechnologies in tissue engineering

2013 ◽  
Vol 2 (4) ◽  
pp. 411-425 ◽  
Author(s):  
Amir K. Bigdeli ◽  
Stefan Lyer ◽  
Rainer Detsch ◽  
Aldo R. Boccaccini ◽  
Justus P. Beier ◽  
...  

AbstractAs an interdisciplinary field, tissue engineering (TE) aims to regenerate tissues by combining the principles of cell biology, material science, and biomedical engineering. Nanotechnology creates new materials that might enable further tissue-engineering applications. In this context, the introduction of nanotechnology and nanomaterials promises a biomimetic approach by mimicking nature. This review summarizes the current scope of nanotechnology implementation possibilities in the field of tissue engineering of bone, muscle, and vascular grafts with forms on nanofibrous structures.

2021 ◽  
Author(s):  
Hui Huang ◽  
Wei Feng ◽  
Yu Chen

Two-dimensional materials have attracted explosive interests in biomedicine, including biosensing, imaging, drug delivery, cancer theranostics, and tissue engineering, stemming from their unique morphology, physiochemical property, and biological effect.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 840 ◽  
Author(s):  
Markus Witzler ◽  
Dominik Büchner ◽  
Sarah Shoushrah ◽  
Patrick Babczyk ◽  
Juliana Baranova ◽  
...  

Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.


Author(s):  
Yasuhiko Tabata

Tissue engineering is a newly emerging biomedical technology and methodology to assist and accelerate the regeneration and repairing of defective and damaged tissues based on the natural healing potentials of patients themselves. For the new therapeutic strategy, it is indispensable to provide cells with a local environment that enhances and regulates their proliferation and differentiation for cell-based tissue regeneration. Biomaterial technology plays an important role in the creation of this cell environment. For example, the biomaterial scaffolds and the drug delivery system (DDS) of biosignalling molecules have been investigated to enhance the proliferation and differentiation of cell potential for tissue regeneration. In addition, the scaffold and DDS technologies contribute to develop the basic research of stem cell biology and medicine as well as obtain a large number of cells with a high quality for cell transplantation therapy. A technology to genetically engineer cells for their functional manipulation is also useful for cell research and therapy. Several examples of tissue engineering applications with the cell scaffold and DDS of growth factors and genes are introduced to emphasize the significance of biomaterial technology in new therapeutic and research fields.


2021 ◽  
Author(s):  
Anna Lapomarda ◽  
Aurora De Acutis ◽  
Carmelo De Maria ◽  
Giovanni Vozzi

Tissue engineering (TE) is an interdisciplinary field that was introduced from the necessity of finding alternative approaches to transplantation for the treatment of damaged and diseased organs or tissues. Unlike the conventional procedures, TE aims at inducing the regeneration of injured tissues through the implantation of customized and functional engineered tissues, built on the so-called ‘scaffolds’. These provide structural support to cells and regulate the process of new tissue formation. The properties of the scaffold are essentials, and they can be controlled by varying the biomaterial formulation and the fabrication technology used to its production. Pectin is emerging as an alternative biomaterial to non-degradable and high-cost petroleum-based biopolymers commonly used in this field. It shows several promising properties including biocompatibility, biodegradability, non-toxicity and gelling capability. Pectin-based formulations can be processed through different fabrication approaches into bidimensional and three-dimensional scaffolds. This chapter aims at highlighting the potentiality in using pectin as biomaterial in the field of tissue engineering. The most representative applications of pectin in preparing scaffolds for wound healing and tissue regeneration are discussed.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5347
Author(s):  
Madalina Oprea ◽  
Stefan Ioan Voicu

Tissue engineering is an interdisciplinary field that combines principles of engineering and life sciences to obtain biomaterials capable of maintaining, improving, or substituting the function of various tissues or even an entire organ. In virtue of its high availability, biocompatibility and versatility, cellulose was considered a promising platform for such applications. The combination of cellulose with graphene or graphene derivatives leads to the obtainment of superior composites in terms of cellular attachment, growth and proliferation, integration into host tissue, and stem cell differentiation toward specific lineages. The current review provides an up-to-date summary of the status of the field of cellulose composites with graphene for tissue engineering applications. The preparation methods and the biological performance of cellulose paper, bacterial cellulose, and cellulose derivatives-based composites with graphene, graphene oxide and reduced graphene oxide were mainly discussed. The importance of the cellulose-based matrix and the contribution of graphene and graphene derivatives fillers as well as several key applications of these hybrid materials, particularly for the development of multifunctional scaffolds for cell culture, bone and neural tissue regeneration were also highlighted.


Sign in / Sign up

Export Citation Format

Share Document