scholarly journals Pectin-Based Scaffolds for Tissue Engineering Applications

2021 ◽  
Author(s):  
Anna Lapomarda ◽  
Aurora De Acutis ◽  
Carmelo De Maria ◽  
Giovanni Vozzi

Tissue engineering (TE) is an interdisciplinary field that was introduced from the necessity of finding alternative approaches to transplantation for the treatment of damaged and diseased organs or tissues. Unlike the conventional procedures, TE aims at inducing the regeneration of injured tissues through the implantation of customized and functional engineered tissues, built on the so-called ‘scaffolds’. These provide structural support to cells and regulate the process of new tissue formation. The properties of the scaffold are essentials, and they can be controlled by varying the biomaterial formulation and the fabrication technology used to its production. Pectin is emerging as an alternative biomaterial to non-degradable and high-cost petroleum-based biopolymers commonly used in this field. It shows several promising properties including biocompatibility, biodegradability, non-toxicity and gelling capability. Pectin-based formulations can be processed through different fabrication approaches into bidimensional and three-dimensional scaffolds. This chapter aims at highlighting the potentiality in using pectin as biomaterial in the field of tissue engineering. The most representative applications of pectin in preparing scaffolds for wound healing and tissue regeneration are discussed.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457 ◽  
Author(s):  
Rodrigo Urruela-Barrios ◽  
Erick Ramírez-Cedillo ◽  
A. Díaz de León ◽  
Alejandro Alvarez ◽  
Wendy Ortega-Lara

Three-dimensional (3D) printing technologies have become an attractive manufacturing process to fabricate scaffolds in tissue engineering. Recent research has focused on the fabrication of alginate complex shaped structures that closely mimic biological organs or tissues. Alginates can be effectively manufactured into porous three-dimensional networks for tissue engineering applications. However, the structure, mechanical properties, and shape fidelity of 3D-printed alginate hydrogels used for preparing tissue-engineered scaffolds is difficult to control. In this work, the use of alginate/gelatin hydrogels reinforced with TiO2 and β-tricalcium phosphate was studied to tailor the mechanical properties of 3D-printed hydrogels. The hydrogels reinforced with TiO2 and β-TCP showed enhanced mechanical properties up to 20 MPa of elastic modulus. Furthermore, the pores of the crosslinked printed structures were measured with an average pore size of 200 μm. Additionally, it was found that as more layers of the design were printed, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and freeze dried was also measured and found to be up to 27% from the printed design. Overall, the proposed approach enabled fabrication of 3D-printed alginate scaffolds with adequate physical properties for tissue engineering applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jin Woo Lee

Tissue engineering recovers an original function of tissue by replacing the damaged part with a new tissue or organ regenerated using various engineering technologies. This technology uses a scaffold to support three-dimensional (3D) tissue formation. Conventional scaffold fabrication methods do not control the architecture, pore shape, porosity, or interconnectivity of the scaffold, so it has limited ability to stimulate cell growth and to generate new tissue. 3D printing technologies may overcome these disadvantages of traditional fabrication methods. These technologies use computers to assist in design and fabrication, so the 3D scaffolds can be fabricated as designed and standardized. Particularly, because nanofabrication technology based on two-photon absorption (2PA) and on controlled electrospinning can generate structures with submicron resolution, these methods have been evaluated in various areas of tissue engineering. Recent combinations of 3D nanoprinting technologies with methods from molecular biology and cell dynamics have suggested new possibilities for improved tissue regeneration. If the interaction between cells and scaffold system with biomolecules can be understood and controlled and if an optimal 3D environment for tissue regeneration can be realized, 3D nanoprinting will become an important tool in tissue engineering.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 794 ◽  
Author(s):  
Su Jeong Lee ◽  
Ji Min Seok ◽  
Jun Hee Lee ◽  
Jaejong Lee ◽  
Wan Doo Kim ◽  
...  

Bio-ink properties have been extensively studied for use in the three-dimensional (3D) bio-printing process for tissue engineering applications. In this study, we developed a method to synthesize bio-ink using hyaluronic acid (HA) and sodium alginate (SA) without employing the chemical crosslinking agents of HA to 30% (w/v). Furthermore, we evaluated the properties of the obtained bio-inks to gauge their suitability in bio-printing, primarily focusing on their viscosity, printability, and shrinkage properties. Furthermore, the bio-ink encapsulating the cells (NIH3T3 fibroblast cell line) was characterized using a live/dead assay and WST-1 to assess the biocompatibility. It was inferred from the results that the blended hydrogel was successfully printed for all groups with viscosities of 883 Pa∙s (HA, 0% w/v), 1211 Pa∙s (HA, 10% w/v), and 1525 Pa∙s, (HA, 30% w/v) at a 0.1 s−1 shear rate. Their structures exhibited no significant shrinkage after CaCl2 crosslinking and maintained their integrity during the culture periods. The relative proliferation rate of the encapsulated cells in the HA/SA blended bio-ink was 70% higher than the SA-only bio-ink after the fourth day. These results suggest that the 3D printable HA/SA hydrogel could be used as the bio-ink for tissue engineering applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


2019 ◽  
Vol 20 (18) ◽  
pp. 4364 ◽  
Author(s):  
Chan Ho Park

Currently, various tissue engineering strategies have been developed for multiple tissue regeneration and integrative structure formations as well as single tissue formation in musculoskeletal complexes. In particular, the regeneration of periodontal tissues or tooth-supportive structures is still challenging to spatiotemporally compartmentalize PCL (poly-ε-caprolactone)-cementum constructs with micron-scaled interfaces, integrative tissue (or cementum) formations with optimal dimensions along the tooth-root surfaces, and specific orientations of engineered periodontal ligaments (PDLs). Here, we discuss current advanced approaches to spatiotemporally control PDL orientations with specific angulations and to regenerate cementum layers on the tooth-root surfaces with Sharpey’s fiber anchorages for state-of-the-art periodontal tissue engineering.


RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63478-63488 ◽  
Author(s):  
Sofia M. Saraiva ◽  
Sónia P. Miguel ◽  
Maximiano P. Ribeiro ◽  
Paula Coutinho ◽  
Ilídio J. Correia

In the area of regenerative medicine different approaches have been studied to restore the native structure of damaged tissues. Herein, the suitability of a photocrosslinkable hydrogel for tissue engineering applications was studied.


2013 ◽  
Vol 683 ◽  
pp. 168-171 ◽  
Author(s):  
Tatiana Patrício ◽  
Antonio Gloria ◽  
Paulo J. Bártolo

This paper investigates the use of PCL and PCL/PLA scaffolds, produced using a novel additive biomanufacturing system called BioCell Printing, for bone tissue engineering applications. Results show that the BioCell Printing system produces scaffolds with regular and reproducible architecture, presenting no toxicity and enhancing cell attachment and proliferation. It was also possible to observe that the addition of PLA to PCL scaffolds strongly improves the biomechanical performance of the constructs.


Sign in / Sign up

Export Citation Format

Share Document